摘要
社交网络影响力传播重点关注如何使用少量的种子集合在社交网络中产生尽可能高的影响力,并将转发作为信息传播的唯一方式,忽略了其他传播方式,例如用户可通过发布一条与所见信息内容相似的信息来进行传播,这种传播方式(称为转述)因为难以追踪,所以存在隐私泄漏的风险。针对上述问题,定义了一种支持转述关系的社交网络信息传播模型,提出了一种支持用户隐私保护的信息传播方法 LocalGreedy,确保用户发送的信息不泄漏到指定黑名单的同时,最大化传播产生的影响力,平衡了隐私保护和信息传播的矛盾。针对种子集合选取的枚举问题,提出了支持隐私保护的递增策略构造种子集合,减少时间开销;给出了计算节点的局部影响子图方法,快速估计种子集合传播产生的影响力;为确保种子集合满足隐私保护约束限制,提出了推导节点泄漏态概率上限的方法,避免使用蒙特卡洛方法产生的时间开销。使用爬取的新浪微博数据集进行实验验证和实例分析,结果表明了所提方法的有效性。
Current relevant researches on influence propagation of social networks focus on how to use a small size seed set to produce the highest impact in social networks,and they often regard forwarding as the only way of information diffusion,ignoring other ways of information diffusion.For example,users can disseminate information by publishing a message with similar content to the message they see.This way of diffusion(referred to as mentioning)is difficult to track,and it is easy to cause the risk of privacy disclosure.Aiming at the causes of privacy leakage in social networks,this paper defines a social network information diffusion model supporting mentioning relationship,and presents a social network information diffusion algorithm LocalGreedy,which can ensure messages sent by users are not leaked to the specified,maximize the influence of the propagation and balance the contradiction between privacy protection and message propagation.This paper proposes an incremental strategy to construct a seed set while reducing time complexity caused by enumeration.After that,giving the calculating method on local influence subgraph,the influence generated by seed set propagation can be quickly estimated.When estimating the influence,a calculation method for deriving the upper limit of privacy leakage probability is proposed to ensure the privacy protection constraint limit and avoid time complexity caused by the Monte Carlo simulation.The crawled Sina Weibo dataset is used to carry out experimental verification and example analysis.The experimental results show that the proposed method is effective.
作者
高昂
梁英
谢小杰
王梓森
李锦涛
GAO Ang;LIANG Ying;XIE Xiaojie;WANG Zisen;LI Jintao(Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China;School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China;Beijing Key Laboratory of Mobile Computing and New Devices,Beijing 100190,China)
出处
《计算机科学与探索》
CSCD
北大核心
2021年第2期233-248,共16页
Journal of Frontiers of Computer Science and Technology
基金
国家重点研发计划(2018YFB1004700,2016YFB0800403)。
关键词
信息传播模型
传播网络推断
影响力最大化
隐私保护
社交网络
information diffusion model
diffusion network inference
influence maximization
privacy protection
social networks