期刊文献+

一种求解0-1背包问题的置信传播算法 被引量:4

A Belief Propagation Algorithm for 0-1 Knapsack Problem
下载PDF
导出
摘要 针对启发式算法在求解0-1背包问题时易陷入局部最优以及寻优精度低等不足,提出一种求解0-1背包问题的置信传播算法。根据0-1背包问题的线性规划,构造该问题的因子图模型,并基于该模型的特点设计对应的标识函数,进而设计一种求解0-1背包问题的置信传播算法。当算法收敛时,计算每个物体节点的置信度,以确定该物体的装包概率,从而高概率地给出0-1背包问题的解。与其他启发式算法进行了比较,结果表明,该算法具有较好的全局搜索能力。 To overcome the shortcoming of heuristic algorithm,such as local optimum and low optimization accuracy,a belief propagation algorithm was proposed for solving 0-1 knapsack problem.The factor graph model of the problem was constructed according to the linear programming.Based on the characteristics of the model,the corresponding identification function was defined,and a belief propagation algorithm was designed for the 0-1 knapsack problem.When the algorithm converged,the confidence of each object node was calculated to determine the packing probability of the object,then got a solution of the 0-1 knapsack problem with high probability.The experimental results showed that this method had better global searching ability compared with other heuristic algorithms.
作者 张丹丹 王晓峰 冯琬晶 左逢源 ZHANG Dandan;WANG Xiaofeng;FENG Wanjing;ZUO Fengyuan(College of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;Ningxia Key Laboratory of Intelligent Information and Big Data Processing, Yinchuan 750021, China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2021年第1期29-34,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(62062001,61762019,61862051,61962002) 宁夏自然科学基金项目(2020AAC03214,NZ17111,2019AAC03120,2019AAC03119) 北方民族大学重大专项(ZDZX201901) 北方民族大学校级科研一般项目(2019XYZJK05)。
关键词 0-1背包问题 线性规划 因子图 置信传播算法 0-1 knapsack problem linear programming factor graph belief propagation algorithm
  • 相关文献

参考文献8

二级参考文献80

  • 1许可,李未.The SAT phase transition[J].Science China(Technological Sciences),1999,42(5):494-501. 被引量:1
  • 2于繁华,杨威,张利彪.基于模糊的多目标粒子群优化算法及应用[J].计算机仿真,2007,24(2):153-156. 被引量:13
  • 3林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 4KENNEDY I, EBERHART R C. Particle swarm optimization [ C ]// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948.
  • 5SHI Yu-hui, EBERHART R C. A modified particle swarm optimizer [ C ]//Proc of IEEE International Conference of Evolutionary Computation. 1998 : 125-129.
  • 6BERGH F, ENGELBRECHT A P. Cooperative learning in neural networks using particle swarm optimizers [ J ]. South African Computer Journal ,2000,11 (6) ;84-90.
  • 7VOSS M S, FENG Xin. ARMA model selection using particle swarm optimization and AIC criteria[ C ]//Proc of the 15th Triennial World Congress. Barcelona : IFAC, 2002:41-45.
  • 8ANDREWS P S. An investigation into mutation operators for particle swarm optimization [ C ]//Proc of IEEE Congress on Evolutionary Computation. 2006 : 1044-1051.
  • 9KHALED B, FZOUZI T. Genetic algorithm for the design of a class of fuzzy controllers: an alternative approach[ J]. IEEE Trans on Fuzzy Systems, 2000,8 ( 4 ) : 398 - 405.
  • 10贺毅朝,王熙照,寇应展.一种具有混合编码的二进制差分演化算法[J].计算机研究与发展,2007,44(9):1476-1484. 被引量:50

共引文献142

同被引文献26

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部