期刊文献+

基于增强CT构建鉴别肾透明细胞癌ISUP分级的神经网络模型 被引量:4

A Neural Network Model Based on Enhanced CT for Distinguishing ISUP Grade of Clear Cell Renal Cell Carcinoma
下载PDF
导出
摘要 目的基于增强CT构建鉴别肾透明细胞癌(ccRCC)ISUP分级的神经网络模型。方法收集本单位病理确诊的ccRCC患者131例,ISUP低级别92例、高级别39例。按5:5分层抽样将患者分为训练集和验证集。由影像科医师对ccRCC增强CT图像进行评价。对患者一般特征及增强CT特征采用递归特征消除(RFE)进行降维,用于神经网络建模及验证。结果患者一般特征及增强CT特征经RFE后降维为14个特征,重要性排序前5的特征为生长方式、坏死、区域淋巴结肿大、肿瘤大小及假包膜。基于该5个特征构建的神经网格模型在训练集鉴别低、高级别ccRCC的AUC为0.8844(95%CI:0.8062~0.9626),敏感度为89.47%,特异性为82.61%。验证集中的AUC为0.7924(95%CI:0.6567~0.9280),敏感度为75.00%,特异性为86.96%。结论基于增强CT构建ccRCC ISUP分级的神经网络模型有较好的诊断效能。 Objective To establish a neural network model based on enhanced CT for distinguishing ISUP grade of clear cell renal cell carcinoma(ccRCC).Methods We collected 131 cases of ccRCC,with 92 cases of low ISUP grade and 39 cases of high ISUP grade.Patients were divided into training set and validation set according to 5:5 stratified sampling.The enhanced CT images of each ccRCC patient were evaluated by the radiologist.Recursive feature elimination(RFE)was used to reduce the dimension of patients’general features and enhanced CT features,which was used for neural network modeling and validation.Results Patients’general features and enhanced CT features were verified by RFE method and then reduced to 14 features.The top 5 features were growth pattern,necrosis,enlargement of lymph nodes,tumor size and capsule.The AUC of the neural network model based on these 5 features in training set was 0.8844(95%CI:0.8062-0.9626),sensitivity was 89.47%and specificity was 82.61%;and those in validation set were 0.7924(95%CI:0.6567-0.9280),75.00%and 86.96%,respectively.Conclusion The neural network model of ccRCC ISUP grade based on enhanced CT has relatively high diagnostic efficiency.
作者 韩冬 张喜荣 贾永军 任革 吕蕊花 史琳娜 贺太平 HAN Dong;ZHANG Xirong;JIA Yongjun;REN Ge;LYU Ruihua;SHI Linna;HE Taiping(Department of Medical Imaging,Affiliated Hospital of Shaanxi University of Chinese Medicine,Xianyang 712000,China;Department of Medical Technology,Shaanxi University of Chinese Medicine,Xianyang 712000,China)
出处 《肿瘤防治研究》 CAS CSCD 2021年第1期55-59,共5页 Cancer Research on Prevention and Treatment
基金 陕西中医药大学学科创新团队建设项目(2019-YS04)。
关键词 多层螺旋计算机体层摄影术 肾肿瘤 肿瘤分级 神经网络 Multidetector computed tomography Kidney neoplasms Neoplasm grading Neural networks
  • 相关文献

参考文献4

二级参考文献56

  • 1Patel AR, Prasad SM, Shih YC, et ah The association of the human development index with global kidney cancer incidence and mortality. J Uro1,2012,187 ( 6 ) : 1978-1983.
  • 2Levi F, Ferlay J, Galeone C,et al. The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int, 2008, 101 (8) :949-958.
  • 3Gm'cia JA, Cowey CL, Godley PA. Renal cell carcinoma. Curt Opin Oncol,2009,21 (3) :266-271.
  • 4Edge SB, Compton CC. The American joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol,2010,17(6) : 1471-1474.
  • 5Bratslavsky G, Kirkali Z. The changing face of renal-cell carcinoma. J Endouro1,2010,24 ( 5 ) :753-757.
  • 6Leibovich BC, Lohse CM, Crispen PL,et al. Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol,2010, 183(4) :1309-1315.
  • 7Delahunt B, Bethwaite PB, Nacey JN. Outcome prediction for renal cell carcinoma: evaluation of prognostic factors for tumours divided according to histological subtype. Pathology, 2007, 39 (5) :459-465.
  • 8Webster WS, Thompson RH, Cheville JC,et ah Surgical resection provides excellent outcomes for patients with cystic clear cell renal cell carcinoma. Urology, 2007,70(5 ) :900-904.
  • 9Antonelli A, Tardanico R, Balzarini P, et al. Cytogenetic features, clinical significance and prognostic impact of type 1 and type 2 papillary renal cell carcinoma. Cancer Genet Cytogenet, 2010,199 (2) : 128-133.
  • 10Tickoo SK, Gopalan A. Pathologic features of renal cortical tumors. Urol Clin North Am,2008,35(4) :551-561.

共引文献55

同被引文献30

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部