摘要
针对遗传算法求解有障碍物的机器人路径规划问题,不同的遗传选择策略,求解性能各有差异.为此,构建平面内含有不同障碍物的四种测试场景,障碍物分别选取矩形、圆形及其混合图形,在相同实验参数下,分别采用轮盘赌策略、君主策略、锦标赛策略三种选择策略进行求解.经过重复实验,统计所求最短路径长度的均值和标准差,结果表明锦标赛策略比其他策略求得的最短路径长度均值和标准差都更小.因此,锦标赛策略在这类问题求解中具有更好的求解性能.
For solving the robot route planning problem with obstacles by the genetic algorithm,different genetic selection strategies have different performances.Therefore,four test scenarios with different obstacles in the plane are constructed.Obstacles are selected from rectangles,circles and their mixed graphics.Under the same experimental parameters,the three selection strategies of roulette wheel selection,emperor selection and tournament selection are used to solve.After repeated experiments,the mean and standard deviation of the shortest path lengths are counted.The results show that the mean and standard deviation of the shortest path lengths obtained by the tournament selection are smaller than those of other selections.Therefore,the tournament selection has better performance in solving such problems.
作者
杨平
谭代伦
YANG Ping;TAN Dailun(School of Mathematics and Information, China West Normal University, Nanchong,Sichuan 637009;Instituteof computing Method and Application Software, China West Normal University,Nanchong,Sichuan 637009)
出处
《绵阳师范学院学报》
2021年第2期81-87,共7页
Journal of Mianyang Teachers' College
基金
四川省教育厅自然科学基金重点项目(15ZA0152)
西华师范大学英才基金项目(17YC387).
关键词
路径规划
遗传算法
轮盘赌策略
君主策略
锦标赛策略
genetic algorithm
robot route planning
roulette wheel selection
emperor selection
tournament selection