期刊文献+

基于S-PMemetic算法的电站锅炉再热器系统建模

Power Station Boiler Based on S-PMemetic Algorithm Reheater System Modeling
下载PDF
导出
摘要 针对再热器这类热工对象普遍存在非线性、大迟延、时变性以及多变量等特点,采用文化基因算法框架下,粒子群(PSO)算法和模拟退火(SA)算法相结合的S-PMemetic算法,对660 MW超超临界机组直流锅炉再热器系统的现场数据进行了多组数据并行辨识。通过该方法得到了超超临界机组再热器7个传递函数通道的系统模型。仿真结果表明,S-PMemetic算法平衡了PSO算法的全局搜索能力和SA算法的局部寻优能力,更适用于辨识复杂的热工控制对象,进一步提高了多变量辨识效率和精确度。 For the thermal objects such as reheaters,there are generally of nonlinear,large delay,time-varying and multivariable characteristics.Based on the field data of the 660 MW ultra-supercritical unit DC boiler reheater system,under the framework of cultural genetic algorithm,the S-PMemetic algorithm is adopted,which combines the particle swarm optimization(PSO)algorithm and the simulated annealing(SA)algorithm.and accuracy.The system model of seven transfer function channels of the ultra-supercritical unit reheater obtained by this method lays a foundation for the design of thermal power unit simulation and reheat steam temperature control system.S-PMemetic balances the global search ability of PSO and the local optimization ability of SA.It is more suitable for identifying complex thermal control objects and further improving the efficiency of multivariate identification.
作者 许壮 张经纬 康英伟 周昊 XU Zhuang;ZHANG Jingwei;KANG Yingwei;ZHOU Hao(School of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《上海电力大学学报》 CAS 2021年第1期11-16,共6页 Journal of Shanghai University of Electric Power
关键词 电站锅炉再热器 多变量系统 S-PMemetic算法 系统辨识 boiler reheater on a station multivariable system S-PMemetic algorithm system identification
  • 相关文献

参考文献12

二级参考文献126

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部