期刊文献+

金属薄板面内压剪变形的损伤断裂行为 被引量:3

Damage and fracture behavior of a metal sheet under in-plane compression -sheardeformation
下载PDF
导出
摘要 相变诱导塑性钢(TRansformation induced plasticity,TRIP)作为常用的先进高强钢在汽车等交通工具的轻量化方面有广泛的应用前景.而对于其复杂零件的成形过程,韧性断裂是不可忽视的问题之一.本文针对现有实验装置不易诱发薄板承受面内压剪时断裂失效,从而无法研究板料负应力三轴度区间断裂行为的问题,以高强钢TRIP800薄板为研究对象,设计了可在单向试验机完成压剪实验的试样和夹具.通过调整夹具旋转角度和试样装夹位置可以实现同一种试样在广泛的负应力三轴度范围内进行压剪断裂分析.基于ABAQUS/Explicit平台建立了三个典型加载方向20°、30°和45°对应的压剪过程有限元模型,分析表明:三种情况的试样局部变形区域的应力三轴度都小于0且断裂点的应力三轴度低至−0.485,验证了设计的装置可实现负应力三轴度区间的断裂失效分析,同时基于MMC断裂准则分析了不同应力状态的初始损伤情况及损伤扩展路径. Increasing demands for lightweight manufacturing accelerate the application of lightweight materials in the transportation,aviation,and power industries.High-strength steel is a popular candidate among various lightweight materials.Transformation-induced plasticity(TRIP)steel,a high-strength,lightweight steel,is promising for forming processes owing to its high strength and toughness.However,the increase in the flow strength of metals will create big challenges for material formability and fracture issues for manufacturing processes.Ductile fracture is still the main failure form during the forming process of TRIP steel.Sheet metal is subject to complex stress states when it undergoes diverse loading paths.Failure modes in metal forming can be mainly classified into the following:tensile,compression,shear,tensile–shear,and compression–shear.Because the metal sheet is prone to buckling failure when it undergoes in-plane compression–shear deformation,it is difficult to induce fracture during the corresponding negative stress triaxiality range.To solve this issue,a novel experimental setup and a specimen were designed to analyze fracture behaviors of an advanced high-strength steel TRIP800 sheet.For the same specimen,the failure behaviors of diverse stress states could be achieved by adjusting the angles between the loading direction and specimen positions.The parallel numerical simulations of in-plane compression –shear deformations under three typical loading angles of 20°, 30°, and 45° were performed on the ABAQUS/Explicitplatform. The predicted stress triaxiality in the local deformation region of the three cases was less than zero, and the lowest was up to−0.485, which verifies that the fracture failure analysis of negative stress triaxiality range could be realized with the designed device. Inaddition, the fracture onset information and damage evolution were analyzed based on the modified Mohr–Coulomb (MMC) fracturecriterion. Furthermore, the fracture strain at the fracture point decreased with the decrease in stress triaxiality when the stress triaxialitywas less than −1/3.
作者 钱凌云 马腾云 安鹏 纪婉婷 孙朝阳 QIAN Ling-yun;MA Teng-yun;AN Peng;JI Wan-ting;SUN Chao-yang(School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China;Beijing Key Laboratory of Lightweight Metal Forming,Beijing 100083,China)
出处 《工程科学学报》 EI CSCD 北大核心 2021年第2期263-272,共10页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(51805023) 北京市自然科学基金资助项目(3184056) 中央高校基础科研业务费资助项目(FRFTP-20-009A2) 中南大学高性能复杂制造国家重点实验室开放基金资助项目(Kfkt2017-03)。
关键词 TRIP800 面内压剪 应力三轴度 应力状态 损伤演变 TRIP800 in-plane compression–shear stress triaxiality stress state damage evolution
  • 相关文献

参考文献5

二级参考文献42

  • 1黄建科,董湘怀.金属成形中韧性断裂准则的细观损伤力学研究进展[J].上海交通大学学报,2006,40(10):1748-1753. 被引量:13
  • 2朱浩,朱亮,陈剑虹,吕先锋.不同应力状态下铝合金变形及损伤机理的研究[J].稀有金属材料与工程,2007,36(4):597-601. 被引量:32
  • 3陈刚,陈忠富,徐伟芳,陈勇梅,黄西成.45钢的J-C损伤失效参量研究[J].爆炸与冲击,2007,27(2):131-135. 被引量:75
  • 4HAN Heung-nam,KIM Keun-hwan. A ductile fracture criterion in sheet forming process[J]. Journal of Mate- rials Processing Technology, 2003. 142(1) : 231-238.
  • 5Bao Wierzbicki. A comparative study on various ductile crack formation criteria[J]. Journal of Engineering Ma- terials and Technology, 2004. 126(3):314-324.
  • 6Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials [J]. Eng. Fract. Mech. , 2008.75 : 3343-3366.
  • 7Li H, Fu M W, Lu J, et al. Ductile fracture; Experi- ments and computations [J]. International Journal of Plasticity, 2011.27 : 147-180.
  • 8Rusinck A, Klepaczko J R. Shear testing of ashcet-steel at wide range of si rain rates and aconstitutivere-lation with strain-rate and temperature dependence ofthe flow stress[J].International Journal of Plasticity,2001, 17(1): 87-115.
  • 9Eyckens I), Van B A,Van H P. An extended Mar-ciniak-Kuczynski model for anisotropic sheet subjec-ted to monotonic strain paths with through-thicknessshear [J].International Journal of Plasticity. 2011,27(10): 1577-1597.
  • 10Brosius A,Yin Q, Gliner A, et al. A new shear testfor vsheet metal characterization [J].Steel ResearchInternational, 2011,82(4) : 323-328.

共引文献30

同被引文献24

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部