期刊文献+

频率依赖性黏弹性复合板动力学特性计算方法

Calculation Method of Frequency-Dependent Viscoelastic Composite Plate Dynamic Characteristics
下载PDF
导出
摘要 将涂覆黏弹性阻尼的压气机叶片简化为考虑频率依赖性的黏弹性复合板,基于经典模态应变能法推导了一种修正的模态应变能法,用于黏弹性复合板的损耗因子计算。设计了一种基于修正模态应变能法的迭代求解方法,通过算例分别使用该计算方法与复特征值迭代法计算考虑频率依赖性的黏弹性复合板动力学特性。结果表明:基于修正模态应变能法的迭代求解方法在提高运算效率的同时,能够准确地计算出频率依赖性黏弹性复合板的动力学特性。 The compressor blade coated with viscoelastic damping was simplified as a viscoelastic composite plate concerning frequency dependence.Based on the classical modal strain energy method,a modified modal strain energy method was derived for calculating the loss factor of viscoelastic composite plates.Furthermore,an iterative solution method based on the modified modal strain energy method was developed,by which and with the combination of the complex eigenvalue iterative method,calculations on the dynamic characteristics of the viscoelastic composite plate related to frequency dependence were worked out.The results show that the iterative solution method on the basis of the modified modal strain energy method can accurately calculate the dynamic characteristics of the viscoelastic composite plate concerning frequency dependence and improve computing efficiency as well.
作者 殷啸宇 齐鸣瑞 YIN Xiaoyu;QI Mingrui(College of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《机械制造与自动化》 2021年第1期78-81,共4页 Machine Building & Automation
关键词 黏弹性材料 修正模态应变能法 频率依赖性 动力学特性 viscoelastic material modified modal strain energy method frequency dependence dynamic characteristics
  • 相关文献

参考文献6

二级参考文献38

  • 1伍先俊,程广利,朱石坚.最小振动功率流隔振系统ANSYS优化设计[J].武汉理工大学学报(交通科学与工程版),2005,29(2):186-189. 被引量:19
  • 2师俊平,刘协会,越巨才,莫宵依.复合材料夹层板的振动及阻尼分析[J].应用力学学报,1996,13(2):132-136. 被引量:11
  • 3Rao D. K.. Frequency and loss factors of sandwich beams under various boundary conditions[ J]. Journal of Mechanical Engineering and Science 1978,20(5):271-282.
  • 4Rikards R., Chate A., Barkanov E.. Finite dement analysis of damping the vibrations of composites[J]. Computers and Structures,1993,47(6):1005-1015.
  • 5Cao X., Mlejnek H. P.. Computational prediction and redesign for viscoelastically damped structures[J]. Comput. Methds. Appl. Mech. Engrg.,1995,125(1):1-16.
  • 6Johnson, C. D. Kienholz, D. K.. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. AIAA Journal,1982,20(9):1284-1290. ,
  • 7Oravsky V., Markus S., Simkova 0.. A new approximate method of finding the loss factor of a sandwich cantilever[J]. Journal of Sound and Vibration,1974,33(3):335-352.
  • 8陈学前,杜强,冯加权.运用有限元分析的阻尼板优化设计[J].振动.测试与诊断,2007,27(3):236-238. 被引量:10
  • 9Tae-Woo Kim,Ji-Hwan Kim. Eigensensitivity based optimal distribution of a viscoelastic damping layer for a flexible beam[J].Journal of Sound and Vibra-tion,2004,(1-2):201-218.
  • 10Cortes F,Elejabarrieta M J. Viscoelastic materials characterisation using the seismic response[J].Mate-rials and Design,2007,(7):2054-2062.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部