期刊文献+

基于对抗式分布对齐的跨域方面级情感分析 被引量:2

Cross-Domain Aspect-Level Sentiment Analysis Based on Adversarial Distribution Alignment
下载PDF
导出
摘要 跨领域情感分类任务旨在利用富含情感标签的源域数据对缺乏标签的目标域数据进行情感极性分析.由此,文中提出基于对抗式分布对齐的跨域方面级情感分类模型,利用方面词与上下文的交互注意力学习语义关联,基于梯度反转层的领域分类器学习共享的特征表示.利用对抗式训练扩大领域分布的对齐边界,有效缓解模糊特征导致错误分类的问题.在Semeval-2014、Twitter数据集上的实验表明,文中模型性能较优.消融实验进一步表明捕获决策边界的模糊特征并扩大样本与决策边界间距离的策略可提高分类性能. The source domain data with rich sentiment labels is utilized to classify the aspect-level sentiment polarity for the target domain data without labels.Therefore,a cross-domain aspect-level sentiment classification model based on adversarial distribution alignment is proposed in this paper.The interactive attention of aspect words and context is employed to learn semantic relations,and the shared feature representations are learned by domain classifiers based on gradient reversal layers.The adversarial training is conducted to expand the alignment boundary of the domain distribution.And then the misclassification problem caused by fuzzy features is alleviated effectively.The experimental results on Semeval-2014 and Twitter datasets show that the performance of the proposed model is better than other classic aspect-level sentiment analysis models.The ablation experiment proves that the classification performance can be improved significantly by the strategy of capturing fuzzy features of decision boundary and expanding the distance between sample and decision boundary.
作者 杜永萍 刘杨 贺萌 DU Yongping;LIU Yang;HE Meng(Faculty of Information Technology,Beijing University of Technology,Beijing 100124)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2021年第1期87-94,共8页 Pattern Recognition and Artificial Intelligence
基金 国家重点研发计划项目(No.2019YFC1906002) 国家语委信息化项目(No.YB135-89)资助。
关键词 跨域方面级情感分析 交互注意力 梯度反转 对抗式训练 Cross-Domain Aspect-Level Sentiment Analysis Interactive Attention Gradient Reversal Adversarial Training
  • 相关文献

参考文献4

二级参考文献118

  • 1Du Wei{u, Tan Songbo, Cheng Xueqi, et al. Adapting information bottleneck method for automatic construction of domain oriented sentiment lexicon [C] //Proc of the 3rd ACM Int Con{ on Web Search and Data Mining. New York= ACM, 2010:111-120.
  • 2Bollegala D, Weir D, Carroll J. Cross-Domain sentiment classification using a sentiment sensitive thesaurus [J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25 (8): 1719-1731.
  • 3Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques [C]//Proc of the Association of Computational Linguistics Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2002:79-86.
  • 4Yu L C, Wu J L, Chang P C, et al. Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news [J]. Knowledge-Based Systems, 2013, 4i: 89-97.
  • 5Zhu Zhu, Dai Darning, Ding Yaxing, et al. Employing emotion keywords to improve cross-domain sentiment classification [G] //LNCS 7717 Chinese Lexical Semantics. Berlin: Springer, 2013 64-71.
  • 6Kaya M, Fidan G, Toroslu I H. Transfer learning using twitter data for improving sentiment classification of turkish political news [G] //LNEE 264: Information Sciences and Systems 2013. Berlin.- Springer, 2013:139-148.
  • 7Jambhulkar P, Nirkhi S. A survey paper on cross-domain sentiment analysis [J]. International Journal of Advanced Research in Computer and Communication Engineering,2014, 3(1): 5241-5245.
  • 8Chawla N V, Bowyer K W, Hail L O, et al. SMOTE: Synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16:321-357.
  • 9Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boum-boxes and blenders: Domain adaptation for sentiment classification [C] //Proc of the 45th Annual Meeting of the Association of Computational Linguistics. Stroudsburg, PA: ACL, 2007:440-447.
  • 10Pan S J, Ni X, Sun J T, et al. Cross-domain sentiment classification via spectral feature alignment[C] //Proc of the 19th Int Conf on World Wide Web. New York: ACM, 2010: 751-760.

共引文献532

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部