摘要
针对混合约束中同时具有等式、不等式和简单凸集约束的二次规划问题,在消除不等式约束的基础上,通过引入新变量将问题等价转化为可分离优化模型,提出子问题具有封闭解形式的交替方向乘子法。数值实验结果表明,相对经典的方法,提出的方法在计算时间上有较明显的改进。
This paper aims at the quadratic programming problem with mixed constraints with equality constraints,inequality constraints and simple convex set constraints.By eliminating inequality constraints and introducing new variables,the above problem is equivalently transformed into a separable optimization model;and an alternating direction method of multipliers is proposed where all sub-problems have closed-form solutions.Numerical results show that the new method has much better performance over computational efficiency than those of classical methods.
作者
刘琬纯
何洪津
LIU Wanchun;HE Hongjin(School of Sciences,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2021年第1期98-102,共5页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
浙江省自然科学基金资助项目(LY20A010018)。
关键词
凸二次规划
交替方向乘子法
增广拉格朗日函数
convex quadratic programming
alternating direction method of multipliers
augmented Lagrangian function