期刊文献+

3D bioactive composite scaffolds for bone tissue engineering 被引量:48

原文传递
导出
摘要 Bone is the second most commonly transplanted tissue worldwide,with over four million operations using bone grafts or bone substitute materials annually to treat bone defects.However,significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma,cancer,infection and arthritis.Developing bioactive three-dimensional(3D)scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering(BTE).A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts.However,individual groups of materials including polymers,ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone.Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds.This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers,hydrogels,metals,ceramics and bio-glasses in BTE.Scaffold fabrication methodology,mechanical performance,biocompatibility,bioactivity,and potential clinical translations will be discussed.
出处 《Bioactive Materials》 SCIE 2018年第3期278-314,共37页 生物活性材料(英文)
  • 相关文献

参考文献4

二级参考文献167

  • 1Basu D, Sinha M K. A Process for the Production of Improved Porous Ocular Implants and Improved Porous Ocular Implants Produced Thereby, Patent no. 197588, India,2006.
  • 2Sanchez E, Baro M, Soriano I, Perera A, Evora c. In vivo-in vitro study of biodegradable and osteointegrable gentamicin bone implants. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52,151-158.
  • 3Eggli P S, Mi.iller W, Schenk R K. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clinical Orthopaedics and Related Research, 1988, 232, 127-138.
  • 4Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier 0, Delplace S, Pilet P, Layrolle P. Ectopic bone formation by microporous calcium phosphate ceramic particlesin sheep muscles. Bone, 2005, 36, 1086-1093.
  • 5Habibovic P, Kruyt M C, Juhl M V, Clyens S, Martinetti R, Dolcini L, Theilgaard N, van Blitterswijk C A. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. Journal of Orthopaedic Research, 2008, 26, 1363-1370.
  • 6Wang H L, Zhai L F, Li Y H, Shi T. Preparation of irregular mesoporous hydroxyapatite. Materials Research Bulletin, 2008,43,1607-1614.
  • 7Zhang S H, Wang Y J, Wei K, Liu X J, Chen J D, Wang X D. Template-assisted synthesis of lamellar mesostructured hydroxyapatites. Materials Letters, 2007, 61,1341-1345.
  • 8Madhavi S, Ferraris C, White T J. Synthesis and crystallization of macroporous hydroxyapatite. Journal of Solid State Chemistry, 2005, 178,2838-2845.
  • 9Zhao D, Yang P, Melosh N, Feng J, Chmelka B F, Stucky G D. Continuous mesoporous silica films with highly ordered large pore structures. Advanced Materials, 1998, 10, 1380-1385.
  • 10Xue W, Bandyopadhyay A, Bose S. Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomaterialia, 2009, 5, 1686-1696.

共引文献28

同被引文献272

引证文献48

二级引证文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部