期刊文献+

Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids

原文传递
导出
摘要 By the standard theory,the stable Qk+1,k−Qk,k+1/Qdck divergence-free element converges with the optimal order of approximation for the Stokes equations,but only order k for the velocity in H1-norm and the pressure in L2-norm.This is due to one polynomial degree less in y direction for the first component of velocity,which is a Qk+1,k polynomial of x and y.In this manuscript,we will show by supercloseness of the divergence free element that the order of convergence is truly k+1,for both velocity and pressure.For special solutions(if the interpolation is also divergence-free),a two-order supercloseness is shown to exist.Numerical tests are provided confirming the accuracy of the theory.
出处 《Communications in Mathematics and Statistics》 SCIE 2013年第2期143-162,共20页 数学与统计通讯(英文)
  • 相关文献

参考文献4

二级参考文献43

  • 1陈传淼.板壳问题有限元的剪力与弯矩佳点[J].湘潭大学学报,(1979):9-15.
  • 2P. Alfeld and L.L. Schumaker, Smooth macro-elements based on Powell-Sabin triangle splits, Adv. Comput. Math., 16 (2002), 29-6.
  • 3D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations VII, ed. R. Vichnevetsky and R.S. Steplemen, 1992.
  • 4G. Baker, W. Jureidini and A. Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal., 27 (1990), 1466-1485.
  • 5S.C. Brenner, An optimal-order multigrid method for P1 nonconforming finite elements, Math. Comp., 52 (1989), 1-15.
  • 6S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer- Verlag, New York, 1994.
  • 7F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer, 1991.
  • 8J. Carrero, B. Cockburn and D. SchStzau, Hybridized globally divergence-free LDG methods. I. The Stokes problem, Math. Comput., 75 (2006), 533-563.
  • 9S.-S. Chow and G.F. Carey, Numerical approximation of generalized Newtonian fluids using Powell-Sabin-Heindl elements: I. theoretical estimates, Int. J. Numer. Meth. Fl., 41 (2003), 1085-1118.
  • 10P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部