期刊文献+

Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation 被引量:8

下载PDF
导出
摘要 Tuning and optimization of electronic structures and related reaction energetics are critical toward the rational design of efficient electrocatalysts.Herein,experimental and theoretical calculation demonstrate the originally inert N site within polyaniline(PANI)can be activated for hydrogen evolution by proper d-πinterfacial electronic coupling with metal oxide.As a result,the assynthesized WO3 assemblies@PANI via a facile redox-induced assembly and in situ polymerization,exhibits the electrocatalytic production of hydrogen better than other control samples including W18O49@PANI and most of the reported nobel-metal-free electrocatalysts,with low overpotential of 74 mV at 10 mA·cm−2 and small Tafel slope of 46 mV·dec−1 in 0.5M H2SO4(comparable to commercial Pt/C).The general efficacy of this methodology is also validated by extension to other metal oxides such as MoO3 with similar improvements.
出处 《Carbon Energy》 CAS 2019年第1期77-84,共8页 碳能源(英文)
基金 The authors appreciate the supports from the National Research Foundation(NRF),Prime Minister’s Office,Singapore,under its Campus for Research Excellence and Technological Enterprise(CREATE)programme.We also acknowledge financial support from the academic research fund AcRF tier 2(M4020246,ARC10/15),Ministry of Education,Singapore.
  • 相关文献

同被引文献53

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部