摘要
Plasma fibrinogen(F1)and fibronectin(pFN)polymerize to form a fibrin clot that is both a hemostatic and provisional matrix for wound healing.About 90%of plasma F1 has a homodimeric pair ofγchains(γγF1),and 10%has a heterodimeric pair ofγand more acidicγ′chains(γγ′F1).We have synthesized a novel fibrin matrix exclusively from a 1:1(molar ratio)complex ofγγ′F1 and pFN in the presence of highly active thrombin and recombinant Factor XIII(rFXIIIa).In this matrix,the fibrin nanofibers were decorated with pFN nanoclusters(termedγγ′F1:pFN fibrin).In contrast,fibrin made from 1:1 mixture ofγγF1 and pFN formed a sporadic distribution of“pFN droplets”(termedγγF1+pFN fibrin).Theγγ′F1:pFN fibrin enhanced the adhesion of primary human umbilical vein endothelium cells(HUVECs)relative to theγγF1+FN fibrin.Three dimensional(3D)culturing showed that theγγ′F1:pFN complex fibrin matrix enhanced the proliferation of both HUVECs and primary human fibroblasts.HUVECs in the 3Dγγ′F1:pFN fibrin exhibited a starkly enhanced vascular morphogenesis while an apoptotic growth profile was observed in theγγF1+pFN fibrin.Relative toγγF1+pFN fibrin,mouse dermal wounds that were sealed byγγ′F1:pFN fibrin exhibited accelerated and enhanced healing.This study suggests that a 3D pFN presentation on a fibrin matrix promotes wound healing.
基金
supported by the University of Nebraska Research Initiative 2018–2019(YL and WV)
the University of Nebraska-Lincoln start-up(YL)
the Nebraska DHHS Stem Cell Grant 2019(YL and WV)
the U.S.Army GRANT10824516(WV)
the Department of Defense,USA,W81XWH-BAA-11-1(WV)
This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior–Brasil(CAPES)–Finance Code 88882.434714/2019–01(EPA and LAV)。