期刊文献+

Design and physical model experiment of an attitude adjustment device for a crawler tractor in hilly and mountainous regions 被引量:5

原文传递
导出
摘要 To address the problems of difficult leveling and poor stability of hill crawler tractors,an attitude adjustment device based on a parallel four-bar mechanism was designed,and the mechanical reasons for the sideslip instability of hill crawler tractors were analyzed.On this basis,a posture adjustment mechanism based on a parallel four-bar mechanism was proposed,and the structure of the complete attitude adjustment device was designed.To ensure that this device meets the strength requirements during operation,a mechanical analysis of the key components(active rocker and slave rocker)was carried out to accommodate the load during leveling.Based on ANSYS software,a finite element simulation analysis was used to determine the maximum stress position of the active and slave rockers.Finally,to verify the accuracy of the above simulation analysis results and determine the influence rules of the lateral slope angle,longitudinal slope angle and loading quality on the abovementioned maximum stress,a physical model test bench of the attitude adjustment device was built.An orthogonal regression experiment was carried out with the maximum stresses of the active and slave rockers as the test indices.The experimental data were analyzed by Design-Expert 10 software,and the results show that the order of the primary and secondary factors influencing the maximum stress of the active rocker was the loading mass,lateral slope angle and longitudinal slope angle.The order of the factors influencing the maximum stress of the slave rocker was the longitudinal slope angle,lateral slope angle and loading mass.The active and slave rockers meet the strength requirements.This work provides technical support for the production of hill crawler tractor physical prototypes.
出处 《Information Processing in Agriculture》 EI 2020年第3期466-478,共13页 农业信息处理(英文)
基金 This research was conducted at the College of Mechanical and Electronic Engineering,Northwest A&F University and was supported by the National Key Research and Development Plan Program(2016YFD0700503).
  • 相关文献

参考文献19

二级参考文献235

共引文献578

同被引文献52

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部