摘要
Osteoporosis bone defect is a refractory orthopaedic disease which characterized by impaired bone quality and bone regeneration capacity.Current therapies,including antiosteoporosis drugs and artificial bone grafts,are not always satisfactory.Herein,a strontium-substituted calcium phosphate silicate bioactive ceramic(Sr-CPS)was fabricated.In the present study,the extracts of Sr-CPS were prepared for in vitro study and Sr-CPS scaffolds were used for in vivo study.The cytocompatibility,osteogenic and osteoclastogenic properties of Sr-CPS extracts were characterized in comparison to CPS.Molecular mechanisms were also evaluated by Western blot.Sr-CPS extracts were found to promote osteogenesis by upregulating Wnt/β-catenin signal pathways and inhibit osteoclastogenesis through downregulating NF-κB signal pathway.In vivo,micro-CT,histological and histomorphometric observation were conducted after 8 weeks of implantation to evaluate the bone formation using calvarial defects model in ovariectomized rats.Compared with CPS,Sr-CPS significantly promoted critical sized ovariectomy(OVX)calvarial defects healing.Among all the samples,Sr-10 showed the best performance due to a perfect match of bone formation and scaffold degradation rates.Overall,the present study demonstrated that Sr-CPS ceramic can dually modulate both bone formation and resorption,which might be a promising candidate for the reconstruction of osteoporotic bone defect.
基金
financial support from National Key Research and Development Program of China(Grant No.2018YFC2002303)
National Natural Science Foundation of China(Grant No.51672304)
International Partnership Program of Chinese Academy of Science(Grant No.GJHZ1760).