期刊文献+

Resazurin as an indicator of reducing capacity for analyzing the physiologic status of deep-sea bacterium Photobacterium phosphoreum ANT-2200

下载PDF
导出
摘要 Resazurin(RZ)is a weakly fl uorescent blue dye and can be reduced irreversibly to highly fl uorescent pink resorufi n(RF)that is reduced reversibly to colorless dihydroresorufi n(hRF)by photodeoxygenation,chemical reaction and reductive organic compounds produced through cell metabolism.Because of the reliable and sensitive fl uorescence-color change and noninvasive features,RZ has been used widely as a redox indicator in cell viability/proliferation assays for bacteria,yeast,and mammalian cells.However,RZ is used rarely for physiological characterization of marine microorganisms.Here,we developed a custom-made irradiation and absorption-analysis device to assess the reducing capacity and physiologic status of marine bacterial cultures.We measured the absorption spectra of RZ,RF,and hRF in the presence of the reducing compound Na 2 S and under visible-light irradiation.After establishing appropriate parameters,we monitored the color changes of RZ and its reduced derivatives to evaluate the coherence between reducing capacity,bioluminescence and growth of the deep-sea bacterium Photobacterium phosphoreum strain ANT-2200 under various conditions.Emission of bioluminescence is an oxidation process dependent upon cellular reducing capacity.Growth and bioluminescence of ANT-2200 cell cultures were impeded progressively with increasing concentrations of RZ,which suggested competition for reducing molecules between RZ at high concentration with reductive metabolism.Therefore,caution should be applied upon direct addition of RZ to growth media to monitor redox reactions in cell cultures.Analyses of the instantaneous reduction velocity of RZ in ANT-2200 cell cultures showed a detrimental eff ect of high hydrostatic pressure and high coherence between the reducing capacity and bioluminescence of cultures.These data clearly demonstrate the potential of using RZ to characterize the microbial metabolism and physiology of marine bacteria.
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第1期297-305,共9页 海洋湖沼学报(英文)
基金 Supported by the National Key R&D Program of China(Nos.2016YFC0302502,2018YFC0309904,2016YFC0304905) the NSFC of China(Nos.91751202,91751108,41806174) the Sanya Municipality(Nos.2018YD01,2018YD02),and the CNRS for LIA-MagMC。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部