期刊文献+

基于简缩极化SAR的溢油检测与分类方法 被引量:1

Oil Spill Detection and Classification Method Based on Compact Polarization SAR
下载PDF
导出
摘要 针对简缩极化SAR在海上溢油的检测与分类应用开展研究,利用欧式距离全面分析了简缩极化SAR的36种极化特征在溢油检测与油膜分类中的性能,发现简缩极化特征中的奇次散射系数的溢油检测性能最好,简缩极化熵的疑似溢油鉴别性能最好。在此基础上,提出了结合二叉树原理的简缩极化SAR溢油检测与油膜分类算法,并分析了RADARSAT-2和SIR-C全极化溢油数据模拟的简缩极化数据。结果表明,此方法对溢油的检测精度可达95.67%,对于疑似溢油的识别精度可达95.71%,证明了简缩极化SAR在溢油检测与分类中具有较好的应用前景。 The application of compact polarization SAR in the detection and classification of oil spill was analyzed in this study.First,we perfomed a comprehensive analysis of the performance of 36 features of compact polarization SAR in oil spill detection and classification by using Euclidean distance,and found that the odd-order scattering coefficient had best performance on oil spill detection,and the compact polarization entropy achieved better performance on oil spill lookalikes identification.Then,we proposed a compact polarization SAR oil spill detection and classification algorithm based on the binary tree idea,and the fully-polarimetric data of RADARSAT-2 and SIR-C were used to reconstruct the reduced polarized data and experiments.Results showed that the detection accuracy of oil spill detection is 95.67%,and the identification accuracy of oil spill lookalikes can reach 95.71%,which is 2%higher than the classic Wishart supervised classification method,indicating that the compact polarization SAR has a better application prospect in oil spill detection and classification.
作者 舒思京 孟俊敏 张晰 刘根旺 SHU Si-jing;MENG Jun-min;ZHANG Xi;LIU Gen-wang(First Institute of Oceanography,MNR,Qingdao 266061,China;Ocean Telemetry Technology Innovation Center,MNR,Qingdao 266061,China)
出处 《海洋科学进展》 CAS CSCD 北大核心 2021年第1期146-157,共12页 Advances in Marine Science
基金 国家重点研发计划——(2017YFC1405300) 国家自然科学基金项目——基于无人机紫外与SAR的溢油遥感监测方法研究(41706208)。
关键词 溢油检测 简缩极化SAR 油膜分类 oil spill detection compact polarimetric SAR oil spill types classification
  • 相关文献

参考文献4

二级参考文献27

  • 1刘钦政,张存智,刘煜,李燕,白珊,张建华.渤海溢油数值预报研究[J].海洋预报,2005,22(z1):70-76. 被引量:18
  • 2梁小祎,张杰,孟俊敏.溢油SAR图像分类中的纹理特征选择[J].海洋科学进展,2007,25(3):346-354. 被引量:19
  • 3XU Q, LI X F, WEI Y L, et al. Satellite observations and modeling of oilspilltrajectoriesin the Bohai Sea[J]. Marine Pollution Bulle- tin, 2013(71): 107-116.
  • 4CHENGY C, LI X F,XU Q, et al. SAR observation and modeltracking ofan oilspilleventin coastal waters[J]. Marine Pollution Bulle- tin, 2011(62): 350-363.
  • 5BAATA M S A. Mutiresolution segmentation: an optimization approach for high quality multiscale image segmentation[J]. Angewandte Geographische Informations verarbeitung, 2000,10 : 12-23.
  • 6MARTIN G, WERNER A. Imaging of biogenic and anthropogenic ocean surface films by the multifrequeney and muhipolarization SIR C/XSAR[J]. Journal of Geographic Research, 1998, 103(C9): 18851-18866.
  • 7ANW, ZHU S F, LI G R, et al. The oil spill forecast and emergency decision support system in china offshore[C]//Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, 2010:1058-1063.
  • 8SONG S S, AN W, ZHAO Y P. A study of detection and prediction of oil spill in ice seasons of the Bohai Sea[C]//Proceedings of the Twenty-fourth (2014) International Ocean and Polar Engineering Conference, 2014: 592-596.
  • 9STRIVER W, MACKAY D. Evaporation rate of spills of hydrocarbons and petroleum mixture[J]. Environmental Science & Technolo- gy,1984,18(11): 834-840.
  • 10邹亚荣,王华,朱海天,陈光明,宋新改.海上溢油SAR图像分割算法研究[J].海洋环境科学,2009,28(3):313-315. 被引量:12

共引文献23

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部