期刊文献+

基于Relief算法的集成测试仪器故障图像自动识别 被引量:1

Automatic identification of fault image of integrated test instrument based on relief algorithm
原文传递
导出
摘要 为了实现对集成测试仪器故障的优化识别,结合图像处理方法,进行集成测试仪器故障检测,提出基于Relief算法的集成测试仪器故障图像自动识别方法。采用差异化的帧扫描技术进行集成测试仪器故障特征检测,结合高分辨的信息和技术进行集成测试仪器故障图像的边缘轮廓特征检测和模糊度辨识,通过模糊中心像素特征分离方法进行集成测试仪器故障图像的特征点检测,采用细化分割技术对图像的故障特征点进行高分辨标记和信息增强处理,采用Relief算法对集成测试仪器故障图像的特征点进行自适应寻优计算,提取集成测试仪器故障图像的显著性特征点,根据特征点提取结果实现对集成测试仪器故障图像的优化识别。仿真结果表明,采用该方法进行集成测试仪器故障图像识别的准确性较高,特征辨识度较好,提高了对故障点的准确标识和检测能力。 In order to optimize the fault identification of integrated test instrument,an automatic fault identification method based on Relief algorithm was proposed for integrated test instrument fault detection based on image processing method.Differentiation frame scanning technology is adopted to improve the integrated test instrument fault feature detection,combined with the high resolution of information and technology integration test instrument malfunction image edge profile feature detection and fuzzy identification,through fuzzy center pixel features separation methods for integrated test instrument fault image feature point detection,the refined segmentation technology to high resolution image of fault feature points marking and the information enhancement,using the algorithm of Relief image feature points of integrated test instrument faults are adaptive optimization calculation,and to extract significant integrated test instrument fault feature points,according to the extraction results of feature points,the fault image of integrated test instrument can be identified optimally.The simulation results show that the method is more accurate in fault image recognition and better in feature recognition,which improves the ability of fault identification and detection.
作者 付琳 FU Lin(Guangdong Nanfang Institute of Technology,Jiangmen 100039,China)
出处 《自动化与仪器仪表》 2021年第1期30-33,共4页 Automation & Instrumentation
基金 广东省普通高校青年创新人才项目(No.2019GKQ NCX046) 广东南方职业学院重点课题(No.2019NFKY002)。
关键词 RELIEF算法 集成测试仪器 故障 图像 特征提取 relief algorithm integrated testing instruments failure images feature extraction
  • 相关文献

参考文献7

二级参考文献53

共引文献166

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部