期刊文献+

基于粒子群算法估计实际工况下锂电池SOH 被引量:7

Estimation of Lithium Battery SOH Under Actual Operating Conditions Based on Particle Swarm Optimization
下载PDF
导出
摘要 提出一种基于粒子群算法和锂电池经验容量模型的对电池实际工况下的健康状态进行估计的新方法.建立了电动汽车实际运行工况下充电曲线特征与电池健康度的线性模型.辅以电池经验容量模型,使之符合监督学习的实际情况并能够用计算机对参数进行拟合.以美国航天航空局电池老化数据建立训练集与验证集,对模型进行训练,并对训练好的模型进行实验验证.实验表明SOH估计误差都在7%以下,在实际工况中能够快速对电动汽车锂电池的健康度进行准确估计. A new method was proposed based on the particle swarm algorithm and the empirical capacity model of lithium batteries to estimate the state of health(SOH)of the battery under actual operating conditions.A linear model was established for charging curve characteristics and battery health under electric vehicle operating conditions.A battery empirical capacity model was supplied to make it conform to the actual situation of supervised learning and to be able to fit the parameters with a computer.Based on NASA's battery aging data,a training set and a validation set were established,training the model and verifying the trained model experimentally.Results show that,the SOH estimation error can reduce to less than 7%.In actual working conditions,the health of lithium batteries of electric vehicles can be accurately estimated quickly.
作者 南金瑞 孙路 NAN Jinrui;SUN Lu(Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081,China;School of Mechanical Engineering,Beijing Institute of Technology, Beijing 100081,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第1期59-64,共6页 Transactions of Beijing Institute of Technology
基金 中国国家重点计划项目(2017YFB0103801) 上海汽车工业技术发展基金会基金资助项目(1620)。
关键词 粒子群算法 实际工况 健康度 particle swarm optimization actual operating conditions state of health(SOH)
  • 相关文献

参考文献3

二级参考文献33

  • 1Xing Y, Ma E, Tsui K, et al. Battery management systems in electric and hybrid vehicles[J]. Energies, 2011,4(11) :1840 - 1857.
  • 2Schmidt A, Bitzer M, Imre A, et al. Model-based distinction and quantification of capacity loss and rate capability fade in li-ion batteries [J]. J Power Sources, 2010,195:7634 - 7638.
  • 3Vetter J, Novak P, Wagner M. Aging mechanisms in lithium-ion batteries[J]. J Power Sources, 2009,147 269 - 281.
  • 4Zhang J, Lee J. A review on prognostics and health mo- nitoring of li-ion battery[J]. J Power Sources, 2011, 196 .. 6007 - 6014.
  • 5Kazuhiko T, Masahiro I, Kazuo T, et al. Quick testing of batteries in lithium-ion battery packs with impedance- measuring technology[J]. J Power Sources, 2004,128: 67 - 75.
  • 6Jungst R, Nagasubramanian G, Case H, et al. Accelerated calendar and pulse life analysis of lithium- ion cells[J]. J Power Sources, 2003,119(1) ..870 -873.
  • 7He W, Williard N, Osterman M, et al. Prognostics of lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method [J]. J Power Sources, 2011,19610314 - 10321.
  • 8Saha B, Goebel K, Poll S, et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009,58(2) ..291 - 296.
  • 9Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear/nomgaussian bayesian state estimation[C] // Proceedings of lEE Proceedings-Radar, Sonar I Navigation. [S. 1.1.- IET Digital Library, 1993, 140(2) :107 - 113.
  • 10Arulampalam M, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2) ..174 - 188.

共引文献26

同被引文献61

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部