期刊文献+

基于仿真推演的导弹作战实验框架分析与设计 被引量:1

Analysis and design of a missile combat experiment framework based on simulation deduction
下载PDF
导出
摘要 针对导弹武器论证设计高成本、高复杂度的问题,本文梳理了导弹作战实验设计服务的多种功能需求,阐述了导弹作战实验设计的数理方法;为构建具有较好柔性的导弹作战实验仿真框架,针对导弹系统多个性能指标,辨析了各类导弹作战实验仿真变量;针对作战实验中的环境和装备特性,梳理了导弹作战实验模型体系,提出了仿真新模型开发框架;结合导弹作战实验案例,构建了实验设计优化方法,提出了作战实验检验设计方案;从运行实验出发,阐述了设定作战想定、建立控制机制、开展结果分析等仿真环节的具体设计。通过这些工作,形成了一种支撑导弹作战实验的柔性仿真框架,为进一步开展基于仿真推演的导弹作战实验提供参考。 Focusing on the high cost and complexity of missile system design,this paper proposes a missile combat experiment framework based on simulation deduction.Firstly,the common functional requirement scenarios of missile combat experiment design service are listed,and the mathematical methods of missile combat experiment design are introduced.To build a flexible simulation framework of missile combat experiment,the simulation variables of missile combat experiment are analyzed and distilled according to the multiple performance indexes of a missile system.To simulate the environment and equipment characteristics in combat experiments,the usual types of models for missile combat experiments are collected,and the steps of how to develop new simulation models are put forward.With certain cases of missile combat experiments,the optimization methods and VV&A of experimental designs are constructed.Finally,the necessary running mechanisms for a simulation application such as setting an operational scenario,establishing a control mechanism and carrying out a result analysis are designed.With the work,a flexible simulation framework supporting missile combat experiments is presented,which could further conduct the missile combat experiment research based on simulation deduction.
作者 吴集 杜宏飞 刘书雷 WU Ji;DU Hongfei;LIU Shulei(College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410074,China)
出处 《国防科技》 2020年第6期110-115,共6页 National Defense Technology
关键词 导弹 仿真 作战实验 实验设计 missile simulation combat experiment experiment design
  • 相关文献

参考文献2

二级参考文献13

  • 1[1]Kacprzyk J,Fderizzi M. A Soft measure of Consensus in the Setting of Partial(Fuzzy) Preferences EU.J.O.R.1998
  • 2[8]Helmbold Osipov R L.The Russian Lanchester EU.J.O.R.1992,65:273-288
  • 3ECKART Z, KALYANMOY D, LOTHAR T. Comparison of multi-objective evolutionary algorithms: empirical results[J].Evolutionary Computation, 2000, 8(2): 173-195.
  • 4COELLO C A C, PULIDO G T, LECHUGA M S. Handling multi pleobjectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
  • 5MENON P K, BRIGGS M, BALLOU R N. Application of numerical optimization techniques for design of optimum trajectory and propulsion subsystem combination, AIAA 87- 0128[R]. 1987.
  • 6SOBIESKI J S, HAFTKA R T. Multi-disciplinary aerospace design optimization survey of recent development, AIAA 96- 0711[R]. 1996.
  • 7ANDERSON M, BURKHALTER J, JENKINS R. Multi-dis ciplinary intelligent systems approach to solid rocket motor de sign part I: single and dual goal optimization, AIAA 2001- 3599[R]. 2001.
  • 8ANDERSON M, BURKHALTER J, JENKINS R. Multi-disciplinary intelligent systems approach to solid rocket motor design part II: multiple goal optimization, AIAA 2001-3600[R]. 2001.
  • 9CHIANG M J, SU Y P, CHANG S D. The optimization of solid rocket vehicles, AIAA 83-1251[R]. 1983.
  • 10SALAJEGHEH E, GHOLIZADEH S. Optimum design of structures by an improved genetic algorithm using neural networks[J]. Advances in Engineering Software, 2005, 36 : 757-767.

共引文献51

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部