期刊文献+

探索功能性脑网络差异的可视分析系统设计与实现 被引量:1

Design and Implementation of Visual Analysis System for Exploring the Difference of Functional Brain Network
下载PDF
导出
摘要 在神经科学和计算机科学等领域,研究人员通过统计模型和深度学习等方法探索不同状态间功能性脑网络工作机制的差别;但现有的功能性脑网络研究工具多用于寻找支持某种假设的证据或传达科学发现,存在功能单一的缺点;针对上述问题,文章设计并实现了一个用于功能性核磁共振数据的交互式可视分析系统BrainDVis,帮助研究人员寻找不同状态间功能性脑网络的多方面差异;BrainDVis将功能性脑网络差异分析功能、网络特征参数分析功能、模块化结构分析功能、功能性连接分析功能相关联,提供多视图协同交互的方法帮助研究人员自主探索,寻找差异;最后使用公开数据集进行实验,验证了系统的可行性和有效性。 In the fields of neuroscience and computer science,researchers generally utilize statistical models and deep learning to explore differences in the internal working mechanism of the functional brain networks between different states.However,existing functional brain networks research methods are mainly used to find evidence that supports a certain hypothesis and convey scientific discoveries,these methods have single functions.In response to the above problems,we designed BrainDVis,an interactive visual analysis tool for functional MRI data,which can be used to help researchers explore the many differences between functional brain networks in different states.BrainDVis correlates functional brain networks difference comparison function,brain network parameter analysis function,modular structure analysis function,and brain functional connection analysis function,provides Multi-View Collaborative Interaction to help researchers explore independently and find differences.Finally,using public data set to conduct experiments,the feasibility and effectiveness of the system are verified.
作者 张振兴 吴亚东 廖竞 王娇 Zhang Zhenxing;Wu Yadong;Liao Jing;Wang jiao(School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang,Sichuan 621000,China;School of Computer,Sichuan University of Science&Engineering,Zigong,Sichuan 643000,China;School of Information Engineering,Southwest University of Science and Technology,Mianyang,Sichuan 621000,China)
出处 《计算机测量与控制》 2021年第1期220-226,共7页 Computer Measurement &Control
基金 国家自然科学基金(61802320,61872304) 国家重点研发计划资助项目(2016QY04W0801) 国防基础科研计划(JCKY 2018404C001)。
关键词 可视分析 功能性脑网络 功能性核磁共振(fMRI) 多视图协同交互 Visual Analysis functional brain networks Functional Magnetic Resonance Imaging(fMRI) Multi-View Collaborative Interaction
  • 相关文献

参考文献3

二级参考文献114

  • 1Wang L Zang Y He Y Liang M Zhang X Tian L Wu T Jiang T Li K.Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI[J].中国生物学文摘,2006,20(10):1-1. 被引量:85
  • 2SHEHZAD Z,KELLY A M C, REISS P T, et al. The resting brain: unconstrained yet reliable [ J ]. Cereb Cortex, 2009,19 ( 10 ) : 2209- 2229.
  • 3ZHANG Dong-yang, RAICHLE M E. Disease and the brain' s dark energy[ J]. Nature Reviews Neurology,2010,6( 1 ) : 15-28.
  • 4HAMPSON M,PETERSON B S,SKUDLARSKI P, et al. Detection of functional connectivity using temporal correlations in MR images [ J ]. Human Brain Mapping,2002,15(4):247-262.
  • 5ACHARD S,BULLMORE E. Efficiency and cost of economical brain functional networks [ J ]. PLOS Computational Biology, 2007, 3 (2) :174-183.
  • 6WATTS D J,STROGATZ S H. Collective dynamics of " small-world" networks[J]. Nature,1998,393(6684) :440-442.
  • 7BASSETT D S, BULLMORE E. Small-world brain networks [ J ]. Neuroscientist,2006,12 (6) :512- 523.
  • 8ZAMORA-LOPEZ G,ZHOU Chang-song, KURTHS J. Graph analysis of cortical networks reveals complex anatomical communication substrate[ J ]. Chaos,2009,19( 1 ) :0151171-0151177.
  • 9FRISTON K J. Modalities, modes, and models in functional neuroimaging [ J ]. Science,2009,326 ( 5951 ) : 399-403.
  • 10BANDETTINI P A. What' s new in neuroimaging methods [ J ]. Annals of the New York Academy of Sciences, :2009,1156 ( 1 ) : 260-293.

共引文献84

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部