期刊文献+

用于文本聚类的新型差分进化粒子群算法 被引量:8

New Differential Evolution with Particle Swarm Optimization Algorithm for Text Clustering
下载PDF
导出
摘要 针对粒子群优化(Particle Swarm Optimization,PSO)算法在维度高、特征稀疏的文本聚类过程中,随着算法迭代次数增加在后期陷入局部最优的问题,提出采用多样性更好的差分进化(Differential Evolution,DE)策略更新种群,尝试找到更好的全局最优解。考虑到种群个体间包含的聚类中心向量排列顺序的随机性对个体间的学习与更新的影响,提出一种自适应调整聚类中心向量排列顺序的方法,将个体间相似度最大的聚类中心向量尽可能排列在同一维度。通过在文本数据集上进行测试,验证了所提出的聚类中心排列调整差分进化粒子群(Index adaptive DEPSO,IDEPSO)算法在内部、外部指标上相对于其他现有算法的优势,证明了该算法的有效性和可行性。 In the process of text clustering with high dimension and sparse features,Particle Swarm Optimization(PSO)algorithm easily falls into the local optimization in the later stage with the increase of algorithm iterations.A Differential Evolution(DE)strategy with better diversity is added to update the population and try to find a better global optimal solution.Meanwhile,considering the influence of the randomness of the centroids order among individuals on learning and updating individuals,a method of the self-adaptive adjustment of the centroids order is proposed,by which the centroid with the maximum similarity between individuals will be listed in the same cluster index as much as possible.Finally,through the test on the text datasets,the advantages of the proposed clustering Index adaptive DEPSO(IDEPSO)algorithm are verified,compared with other existing algorithms in internal and external indicators,and the effectiveness and feasibility of the algorithm are proved.
作者 胡晓敏 王明丰 张首荣 李敏 HU Xiaomin;WANG Mingfeng;ZHANG Shourong;LI Min(School of Computers,Guangdong University of Technology,Guangzhou 510006,China;School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第4期61-67,共7页 Computer Engineering and Applications
基金 国家自然科学基金(61772142) 广东省自然科学基金面上项目(2019A1515011270) 广州市珠江科技新星项目(201806010059) 广东省信息物理融合系统重点实验室项目(2016B030301008)。
关键词 文本聚类 高维度 粒子群优化(PSO) 差分进化(DE) K-均值 text clustering high dimension Particle Swarm Optimization(PSO) Differential Evolution(DE) K-means
  • 相关文献

参考文献6

二级参考文献50

  • 1张丽新,王家钦,赵雁南,杨泽红.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184. 被引量:18
  • 2王曙燕,耿国华,李丙春.决策树算法在医学图像数据挖掘中的应用[J].西北大学学报(自然科学版),2005,35(3):262-265. 被引量:22
  • 3胡建秀,曾建潮.二阶振荡微粒群算法[J].系统仿真学报,2007,19(5):997-999. 被引量:21
  • 4袁俊刚,孙治国,曲广吉.差异演化算法应用问题研究[J].计算机工程与应用,2007,43(7):75-77. 被引量:6
  • 5袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 6Kim H K, Chong J K, Park K Y. Differential evolution strategy for constrained global optimization and application to prac?tical engineering problems[J]. IEEE Transactions on Mag?netics, 2007, 43(4): 1565-1568.
  • 7Neri F, Mininno E. Memetic compact differential evolution for cartesian robot control[J]. IEEE Computation Intelligence, 2010,5(2): 54-65.
  • 8Pinter J D. Continuous global optimization software: a brief review[EB/OL].[2013-03]. http://plato.asu.edulgom.html.
  • 9Parsopoulosl K E, Tasoulisl D K, Pavlidis N G, et al. Vector evaluated differential evolution for multiobjective optimiza?tion[C/OL]//Proceedings of the Congress on Evolutionary Computation (CEC 2004), 2004: 204-211.[2013-03]. http:// www.lania.mx/ccoello/EMOO/parsopoulos04a.pdf.
  • 10Menon P P, Kim J, Bates D G, et al. Clearance of nonlinear flight control laws using hybrid evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 689-699.

共引文献132

同被引文献73

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部