期刊文献+

基于SCADA数据特征提取的风电机组偏航齿轮箱故障诊断方法研究 被引量:28

Research on Diagnosis Method of Wind Turbine Yaw Gearbox Based on SCADA Data Feature Extraction
下载PDF
导出
摘要 针对风力发电机组偏航系统故障处理难度大和危害严重等问题,开发出基于数据采集与监视控制(SCADA)数据的偏航齿轮箱神经网络诊断模型。利用ReliefF算法和核密度-均值法提取能反映出偏航齿轮箱运行工况的7个SCADA参数,并提取出6种故障特征指标作为神经网络诊断模型输入量,来诊断偏航齿轮箱的正常状态、磨损故障以及断齿故障共3种运行状态。结果表明:经神经网络诊断模型训练后的误差精度满足诊断要求,能准确诊断偏航齿轮箱故障。 To solve the serious problem in a wind turbine yaw system that is difficult to deal with, a neural network diagnosis model was proposed for the yaw gearbox of a wind turbine based on SACDA monitoring data. Seven SCADA characteristic parameters reflecting operation conditions of the yaw gearbox were extracted by ReliefF and kernel density-mean algorithm, while six fault characteristic indexes were extracted and taken as the input of the diagnosis model to identify the normal state, wear state and broken tooth state of the yaw gearbox. Results show that the training accuracy of the neural network model meets the requirements of diagnosis, which can be applied in the fault diagnosis of yaw gearboxes.
作者 邓子豪 李录平 刘瑞 杨波 陈茜 李重桂 DENG Zihao;LI Luping;LIU Rui;YANG Bo;CHEN Xi;LI Zhonggui(School of Energy and Power Engineering,Changsha University of Science and Technology,Changsha 410014,China;Guangzhbu Special Pressure Equipment Inspection and Research Institute,Guangzhou 510000,China)
出处 《动力工程学报》 CAS CSCD 北大核心 2021年第1期43-50,共8页 Journal of Chinese Society of Power Engineering
基金 广东省质量技术监督局科技资助项目(2018CT28) 广州特种承压设备检测研究院科技资助项目。
关键词 风电机组 偏航齿轮箱 神经网络 故障诊断 SCADA wind turbine yaw gearbox neural network fault diagnosis SCADA
  • 相关文献

参考文献7

二级参考文献37

  • 1陈波,何明.兆瓦级风电机组偏航系统异响原因分析和改进[J].风能,2012(11):88-91. 被引量:7
  • 2Ekelund T. Yaw control for reduction of structural dynamic [ J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,85:241-262.
  • 3Jacobson Sheldon H, Yucesan Enver. Analyzing the performance of gemeralized hill climbing algorithms [ J ]. Journal of Heuristics, 2004,10 ( 4 ) : 387-405.
  • 4Farret F A, Pfitscher L L, Bemardon D P. Sensorless active yaw control for wind turbines[ C]//27th Annual Conference of the IEEE Industrial Electronics Society. Denver, USA: [ s. n. ] ,2001.
  • 5陈在平 杜太行.控制系统计算机仿真与CAD[M].天津:天津大学出版社,2001..
  • 6章卫国 杨向忠 编著.模糊控制理论与应用[M].西安:西北工业大学出版社,2001..
  • 7李晓燕,王志新.风力机偏航控制策略及系统设计[J].微计算机信息,2007(25):1-3. 被引量:15
  • 8Zaher A, Mcarthur S, Infield D, et al. Online wind turbine fault detection through automated SCADA data analysis[J]. Wind Energy, 2009, 12(6) : 574-593.
  • 9Qiu Y, Feng Y, Tavner P, et al. Wind turbine SCADA alarm analysis for improving reliability[J]. Wind Energy, 2012, 15(8): 951-966.
  • 10Hansen M. Improved modal dynamics of wind turbines to avoid stall-induced vibrations [J]. Wind Energy, 2003, 6(2) : 179-195.

共引文献64

同被引文献310

引证文献28

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部