期刊文献+

基于修正观测值的水下移动节点定位算法 被引量:1

A localization algorithm based on modified observations for underwater mobile nodes
下载PDF
导出
摘要 针对由声线弯曲和节点移动性造成的水声定位系统定位误差偏大的问题,提出了基于修正观测值的粒子滤波算法(MOPF)。首先,根据声速剖面,使用迭代逼近的方式初步修正观测距离,补偿由声线弯曲造成的测距误差。然后,利用移动节点在信标节点方向上的分速度与定位信号到达时间差的乘积,进一步修正观测距离。最后,使用二次修正的观测值更新粒子滤波产生随机的粒子权重,得出最佳位置估计。仿真实验表明,MOPF算法平均定位误差为0.72 m,定位精度较扩展卡尔曼滤波算法提升了50%。MOPF算法解决了节点运动特性及所处方位对定位精度造成的影响,提高了定位系统的稳定性。 In the underwater acoustic positioning system,the bending of the acoustic line and the mobility of the nodes are the main factors that cause the large positioning error.To solve this problem,a modified observations particle filter(MOPF)is proposed.First,according to the sound velocity profile,the observation distance is modified by iterative approach to compensate the ranging error caused by the bending of the sound line.Then,the observation distance is further modified by the product of the velocity of the mobile node in the direction of the beacon node and the arrival time difference of the positioning signal.Finally,the weight of the random particles generated by the particle filter is updated by the twice modified observation value,and the best position estimation is obtained.The simulation results show that the average positioning error of MOPF algorithm is 0.72 m,and the positioning accuracy is improved by 50%compared with the extended Kalman filter algorithm.The MOPF algorithm solves the influence of node motion characteristics and position on positioning accuracy,and improves the stability of positioning system.
作者 冯国君 单志龙 项婉 FENG Guojun;SHAN Zhilong;XIANG Wan(School of Computer Science,South China Normal University,Guangzhou 510631,China;School of Distance Education,South China Normal University,Guangzhou 510631,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2020年第5期603-607,共5页 Journal of Chinese Inertial Technology
基金 国家自然科学基金项目(61671213) 广州市科技计划项目(201904010195)。
关键词 水声定位 声线弯曲 移动节点 声速剖面 修正观测值 粒子滤波 underwater acoustic localization sound ray bending mobile nodes sound velocity profile modified observations particle filter
  • 相关文献

参考文献5

二级参考文献37

  • 1丁继胜,周兴华,唐秋华,刘忠臣,陈义兰.基于等效声速剖面法的多波束测深系统声线折射改正技术[J].海洋测绘,2004,24(6):27-29. 被引量:29
  • 2尤立克R J.水声原理[M].哈尔滨:哈尔滨船舶工程学院出版社,1983..
  • 3Akyildiz I F,Pompili D,Melodia T.Underwater acoustic sensor networks:research challenges[C]//Ad Hoc Networks(Elsevier),2005,3(3):257–279.
  • 4Heidemann J,Wei Ye,Jack Wills,et al.Research challenges and applications for underwater sensor networking[C]//Wireless Communications and Networking Conference,2006,WCNC 2006.USA:IEEE,2006,V1,3-6:228-235.
  • 5Sanjeev Arulampalam M,Simon Maskell,Neil Gordon,Tim Clapp.A tutorial on particle filters for online nonlinear non-gaussian bayesian tracking[J].IEEE TRANSACTIONS ON SIGNAL PROCESSING,2002,50(2):174-188.
  • 6Morelande M R,Challa S.Manoeuvring target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Elec-tronic Systems,2005,41(1):252-270.
  • 7Gordon N J,Salmond D J,Smith A F M.A novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].Proc.Inst.Elect.Eng,Radar Signal Process,1993,140(2):107-113.
  • 8R.van der Merwe,A.Doucet,J.F.G.de Freitas,E.Wan,The unscented particle filter[R].Cambridge University Engineering Department,2000.
  • 9Hammersley J M,Morton K W.Poorman Monte Carlo[J].J of the Royal Statistical Society B,1954,16(1):23-381.
  • 10Doucet A,Godsill S.On sequential Monte Carlo sampling me-thods for Bayesian filtering[R].Cambridge:University of Cam-bridge,1998:1-36.

共引文献125

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部