期刊文献+

基于蒙特卡罗法的纳米颗粒悬浮液的太阳能吸收性能

Solar absorption performance of nanoparticle suspensions based on Monte Carlo method
下载PDF
导出
摘要 基于蒙特卡罗法,研究考虑纳米颗粒散射作用下其悬浮液的太阳能吸收性能。研究结果表明:当纳米颗粒粒径较大时,颗粒散射作用对其悬浮液吸收性能的影响不能忽略;随着颗粒粒径增大,悬浮液的太阳能吸收效率先增大后减小,半径为55 nm的Cu@SiO2颗粒获得最优的太阳能吸收性能;随着悬浮液颗粒体积分数和厚度增大,悬浮液的太阳能吸收效率逐渐增大,但进一步增大悬浮液颗粒体积分数和厚度,其太阳能吸收效率逐渐达到饱和,且未能完全吸收太阳辐射,体积分数为0.21%(高度为1 mm)和高度为21 mm(体积分数为0.01%)的悬浮液获得的太阳能吸收效率分别为71.55%和76.79%;基于此,通过设计多层SiO2@Cu@SiO2颗粒调控悬浮液在太阳光谱上的吸收性能,达到了太阳能全光谱吸收。 Based on the Monte Carlo method(MC),the solar absorption performance of the suspension under the influence of nanoparticle(NP)scattering was studied.The results show that when the size of nanoparticles is large,the effect of particle scattering on the absorption performance of the suspension cannot be ignored.As the NP size increases,the solar absorption efficiency of the suspension first increases and then decreases.Cu@SiO2 nanoparticles with a radius of 55 nm obtain the best solar absorption performance.As the volume fraction and thickness of the suspension increase,the solar absorption efficiency of the suspension gradually increases,but if the volume fraction and thickness of the suspension further increase,the solar absorption efficiency gradually reaches saturation and fails to fully absorb solar radiation.The solar energy absorption efficiency of the suspension with the volume fraction of 0.21%(height of 1 mm)and the height of 21 mm(volume fraction of 0.01%)is 71.55%and 76.79%,respectively.Based on it,the full solar spectrum absorption is achieved by designing multiple layers of SiO2@Cu@SiO2 particles to control the absorption performance of the suspension in the solar spectrum.
作者 陈星宇 伍东玲 周萍 庞丹 陈梅洁 CHEN Xingyu;WU Dongling;ZHOU Ping;PANG Dan;CHEN Meijie(School of Energy Science and Engineering,Central South University,Changsha 410083,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期239-248,共10页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(52006246)。
关键词 纳米颗粒 散射 吸收 蒙特卡罗 太阳能 nanoparticle scattering absorption Monte Carlo solar energy
  • 相关文献

参考文献8

二级参考文献44

  • 1McGovern R K, Smith W J. Optimal concentration and temperatures of solar thermal power plants [ J ]. Energy Conversion and Management,2012,60 : 226-232.
  • 2Yang L, Xuan Y, Han Y, eta|. Investigation on the per- formance enhancement of silicon solar cells with an assem- bly grating structure[ J]. Energy Conversion and Manage-ment, 2012,54( 1 ) : 30-37.
  • 3Groot H J M. Integration of Catalysis with Storage for the Design of Multi-Electron Photochemistry Devices for Solar Fuel[ J]. Applied Magnetic Resonance, 2009,37 ( 1/2/3/ 4) : 497-503.
  • 4Minardi J E, Chuang H N flat-plate solar collector[ J ] . Performance of a black liquid Solar Energy, 1975, 17(3): 179-183.
  • 5Abdelrahman M, FumeauxP, SuterP. Study of solid-Gas- Suspensions Uesed for Direct Absorption of Concentrated Solar Radiation[ J]. SolarEnergy, 1979, 22 (1) :45-48.
  • 6DrotningWD. Optical Properties of Solar-Absorbing Oxide Particles Suspended In a Molten salt Heat Transfer Fluid [J]. Solar Energy,1978,20(4) :313-319.
  • 7Z Wang, G F Naterer, K S Gabriel, et al. Thermal design of a solar hydrogen plant with a copper-chlorine cycle and molten salt energy storage [ J]. Int J Hydrogen Energy, 2011, 36(17) :11258-11272.
  • 8K Lance Kelly, Eduardo Coronado, Lin Lin Zhao , et al. The Optical Properties of Metal Nanoparticles: The Influ- ence of Size, Shape, and Dielectric Environment [ J]. J. Phys. Chem. B,2003,107(3): 668-677.
  • 9Xie H, Wang J, Xi T, et al. Thermal conductivity of sus- pensions containing nanosized SiC particles [ J ]. Int. J. Thermophys, 2002, 23 (2) : 571-580.
  • 10D Han, Z Meng, D Wu, et al. Thermal properties of car- bon black aqueous nanofluids for solar absorption [ J ]. Nanoscale Res Lett, 2011,6:457.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部