摘要
This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach.Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance,thermal behavior,reservoir pressure and fluid saturation features.Air flooding is used as the basic case for a comparative study.The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir,but not for simple air flooding.The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-npuff injection strategy.Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection.O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs.Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage.No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs.Huffn-puff air injection has great potential to develop shale oil reservoirs.The results from this work may stimulate further investigations.
基金
The authors would like to acknowledge the funding from U.S.Department of Energy under Award Number DE-FE0024311
In addition,this paper was supported by National Natural Science Foundation of China(No.51404202)
Sichuan Youth Science and Technology Fund(No.2015JQ0038)
scientific research starting project of SWPU(No.2014QHZ001).