摘要
针对现有出租车轨迹数据挖掘中时间序列邻近度量方法存在的问题,提出一种基于DBSCAN算法和改进的DTW距离的时间序列聚类算法提取具有相似性出行特征的时空模式,进而研究城市人群出行行为的时空差异。以南京市为例,结合电子地图对出行模式的空间分布特征进行分析,证明了本文所提出的方法的有效性。实验结果表明:在空间分布上,工作日出租车出行模式按照平均出行频次由高到低排序,从城市中心向四周扩散,呈中心环状分布,出行模式区域界限较为明显,同类出行模式分布区域对应相似的功能。提出了一种基于DBSCAN算法和改进的DTW距离的时间序列聚类算法提取具有相似性出行特征的时空模式,有效地分析城市人群出行行为的时空差异。
Aiming at the problems of time series proximity measurement methods in existing taxi trajectory data mining,a time series clustering algorithm based on DBSCAN algorithm and improved DTW distance is proposed to extract spatiotemporal patterns with similar travel characteristics,and then to study temporal and spatial differences in travel behavior of urban crowd.Taking Nanjing city as an example,the analysis of the spatial distribution characteristics of travel patterns combined with electronic maps proves the effectiveness of the method proposed in this article.The results show that human mobility patterns in working days is arranged from high to low according to the average travel frequency,and spreads from the city center to the surrounding area,showing a central circular distribution.The distribution of movement patterns is influenced by the type of land use or urban functions.A time series clustering algorithm based on DBSCAN algorithm and improved DTW distance is proposed to extract spatio-temporal patterns with similar travel characteristics,and effectively analyze the spatiotemporal differences of urban crowd travel behavior.
作者
邸少宁
朱杰
郑加柱
杨静
丁凯孟
DI Shaoning;ZHU Jie;ZHENG Jiazhu;YANG Jing;DING Kaimeng(College of Civil Engineering,Nanjing Forestry University,Nanjing 210037,China;School of Geography,Nanjing Normal University,Nanjing 210023,China;School of Networks and Tele-Communications Engineering,Jinling Institute of Technology,Nanjing 211169,China)
出处
《测绘科学》
CSCD
北大核心
2021年第1期203-212,共10页
Science of Surveying and Mapping
基金
国家自然科学青年科学基金项目(41501431)
江苏省自然科学青年基金项目(BK200170116)
南京林业大学人才科研启动基金项目(GXL2018049)。
关键词
出租车轨迹数据
时间序列度量
时间序列聚类
出行模式
taxi trajectory data
timeseries similarity measurement
time series clustering
human mobility patterns