摘要
本文针对二阶椭圆边值问题,提出了一种基于重心剖分的间断有限体积元方法,并得到了该方法在离散H^1范数和L^2范数意义下的最优误差估计.
According to the second order elliptic boundary value problems,we present a discontinuous finite volume element method based on the barycentric partition,and obtain the optimal error estimates in the discrete H^1 norm and L^2 norm.
作者
宋飞
薛凯文
Song Fei;Xue Kaiwen(Department of Applied Mathematics,College of Science,Nanjing Forestry University,Nanjing 210037;Department of Mathematics,Nanjing University,Nanjing 210093)
出处
《南京大学学报(数学半年刊)》
2020年第1期67-82,共16页
Journal of Nanjing University(Mathematical Biquarterly)
基金
BK20190745
18KJB110015
CX2019026。
关键词
二阶椭圆方程
间断有限体积元方法
最优误差估计
Second order elliptic equation
discontinuous finite volume element method
optimal error estimates