期刊文献+

基于风荷耦合特性的源荷储的优化调度 被引量:10

Optimal Scheduling of Source-load-storage Based on Wind-load Coupling Characteristics
下载PDF
导出
摘要 风电的随机性和波动性给电力系统的运行与控制带来了挑战。在研究新疆某地风电负荷数据的基础上得到了风荷耦合特性,基于此提出一种源荷储双层优化调度策略。上层优化模型以风电消纳最大为目标,通过风荷耦合特性确定工业负荷转移时段及容量,并得到常规机组的运行情况形成日前调度计划。下层优化模型以系统运行成本最优为目标,基于上层优化结果,通过调节常规机组出力及储能电站充放电功率来抑制风电波动。最后通过改进的粒子群算法求解模型验证了所提调度策略的有效性。 The randomicity and fluctuation of wind power creates many challenges for power system.The paper carries out the research about the wind power load data from a certain place in Xinjiang,obtains wind-load coupling characteristics,and proposes a bi-level optimal scheduling strategy of source-load-storage.The goal of optimal scheduling with upper level model is to maximize wind power accommodation.According to the wind-load coupling characteristics,the time interval and capacity of industrial load transfer is determined,and the operation status of conventional unit is obtained to make the day-ahead dispatch plan.The goal of optimal scheduling with lower level model is to optimize the system operation cost.Based on the optimizations with upper level model,the output regulation of the conventional unit and the charging and discharging power control in energy storage system is used for smoothing wind power fluctuation.Finally,the effectiveness of the scheduling strategy is verified by solving the model with an improved particle swarm optimization algorithm.
作者 刘海南 蔺红 樊国旗 程林 LIU Hainan;LIN Hong;FAN Guoqi;CHENG Lin(School of Electrical Engineering,Xinjiang University,Urumqi 830047,China;State Grid Jinhua Power Supply Company,Jinhua 321001,China;Northwest Branch of State Grid Corporation of China,Xi’an 710048,China)
出处 《智慧电力》 北大核心 2021年第1期42-47,共6页 Smart Power
基金 国家自然科学基金资助项目(51667019)。
关键词 协调互动 风电消纳 风荷耦合特性 coordination and interaction wind power accommodation wind-load coupling characteristics
  • 相关文献

参考文献14

二级参考文献259

  • 1Chenxing YANG,Qingshan XU,Xufang WANG.Strategy of constructing virtual peaking unit by public buildings’central air conditioning loads for day-ahead power dispatching[J].Journal of Modern Power Systems and Clean Energy,2017,5(2):187-201. 被引量:6
  • 2刘钊,康立山,蒋良孝,杨林权.用粒子群优化改进算法求解混合整数非线性规划问题[J].小型微型计算机系统,2005,26(6):991-994. 被引量:12
  • 3刘强,薛禹胜,Zhaoyang DONG,Gerard LEDWICH,袁越.基于稳定域及条件概率的暂态稳定不确定性分析[J].电力系统自动化,2007,31(19):1-6. 被引量:11
  • 4CALLAWAY D S, HISKENS I A. Achieving controllability ofloads[J]. Proceedings of the IEEE, 2011,99(1) : 184-199.
  • 5MIRANDA M S, DUNN R W. One-hour-ahead wind speedprediction using a Bayesian methodology [C]// Proceedings ofIEEE Power Engineering Society General Meeting, June 18-22,2006, Montreal, Canada.
  • 6NIKKHAJOEI H, LASSETER R. Distributed generationinterface to the CERTS microgrid [J]. IEEE Trans on PowerDelivery, 2009,24(3): 1598-1608.
  • 7VAZQUEZ S,LUKIC S M, GALVAN E, et al. Energystorage systems for transport and grid applications [J]. IEEETrans on Industrial Electronics, 2010,57(12) : 3881-3895.
  • 8BREKKEN T K A, YOKOCHI A, VON JOUANNE A,et al.Optimal energy storage sizing and control for wind powerapplications [J]. IEEE Trans on Sustainable Energy, 2011,2(1): 69-77.
  • 9MA Yuchao, HOUGHTON T,CRUDEN A, et al. Modelingthe benefits of vehicle-to-grid technology to a power system[J]. IEEE Trans on Power Systems, 2012,27 ( 2 ):1012-1020.
  • 10SIOSHANSI R. Evaluating the impacts of real-time pricing onthe cost and value of wind generation [JIEEE Trans onPower Systems, 2010,25(2) : 741-748.

共引文献781

同被引文献168

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部