期刊文献+

具有Logistic输入和密度制约的一类阶段结构传染病模型

A Class of Stage-structured Epidemic Model with Logistic Input and Density Dependence
下载PDF
导出
摘要 研究了一类将种群分为幼年和成年,假设成年个体患病,幼年个体受密度制约的具有Logistic输入的阶段结构传染病模型,得到了阶段结构种群的基本再生数和传染病的基本再生数。利用Hurwitz判据和构造Lyapunov函数,运用LaSalle不变性原理的方法,证明了R0和Re0满足一定条件时平衡点的局部稳定性和全局稳定性。最后,利用Matlab进行了数值模拟,验证了所得结果的正确性。 In this paper,we studied a class of stage-structured infectious disease models with logistic input and density dependence,and obtained the basic reproduction number of stage structured model and the infectious disease.The population was divided into youth and adult,and assume only adult individuals can be infected,young individuals are restricted by density.By using Hurwitz criterion and construct Lyapunov function,and by using LaSalle invariant principle,the local and global stability of equilibrium point is proved when R0 and Re0 satisfy certain conditions.Finally,numerical simulation is carried out by Matlab to verify the results.
作者 刘亭亭 乔志琴 LIU Tingting;QIAO Zhiqin(School of Science,North University of China,Taiyuan 030051,China)
机构地区 中北大学理学院
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第1期264-270,共7页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(11401541) 博士学科点专项科研基金资助项目(20111420120006)。
关键词 阶段结构 密度制约 平衡点 稳定性 stage structure density dependence equilibrium point stability
  • 相关文献

参考文献8

二级参考文献29

  • 1XIAOYanni,CHENLansun.ON AN SIS EPIDEMIC MODEL WITH STAGE STRUCTURE[J].Journal of Systems Science & Complexity,2003,16(2):275-288. 被引量:8
  • 2曾广钊,孙丽华.非自治阶段结构与时滞捕食模型的持久性和周期解(英文)[J].生物数学学报,2005,20(2):149-156. 被引量:11
  • 3Chen Junjie Liu Xiangguan.STABILITY OF AN SEIS EPIDEMIC MODEL WITH CONSTANT RECRUITMENT AND A VARYING TOTAL POPULATION SIZE[J].Applied Mathematics(A Journal of Chinese Universities),2006,21(1):1-8. 被引量:3
  • 4Wei-min Liu,Herbert W. Hethcote,Simon A. Levin.Dynamical behavior of epidemiological models with nonlinear incidence rates[J].Journal of Mathematical Biology.1987(4)
  • 5Claude Lefèvre.Threshold behaviour for a chain-binomial S-I-S infectious disease[J].Journal of Mathematical Biology.1986(1)
  • 6Herbert W. Hethcote,Harlan W. Stech,P. Driessche.Stability analysis for models of diseases without immunity[J].Journal of Mathematical Biology.1981(2)
  • 7Herbert W. Hethcote,P. Driessche.An SIS epidemic model with variable population size and a delay[J].Journal of Mathematical Biology.1995(2)
  • 8Anderson,R. M. and May,R. M.Infectious Disease of Humans and Control, Oxford Unly[]..1991
  • 9Aiello,W. G. and Freedman,H. I.A time delay model of single species growth with stage structure,Math[].Biosci.1990
  • 10Freedman,H. I. and Wu,J. H.Persistence and global asymptotic stability of single species dispersed models with stage structure, Q[].Journal of Applied Mathematics.1991

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部