期刊文献+

基于AR_TSM的时间序列motif关联规则挖掘方法研究 被引量:9

Research on time series motif association rule mining method based on AR_TSM
下载PDF
导出
摘要 挖掘时间序列motif间潜在的关联规则可以在预测未来趋势方面发挥重要作用,时间序列motif即时间序列中先前未知的重复出现的模式。针对符号化时间序列提取motif导致信息丢失的问题,提出基于剪枝技术的motif提取算法PM_Motif,实现了保留原始信息的motif的精准快速提取;针对分割motif来发现其内部关联规则导致的规则不一致的问题,从motif间的关联规则入手,给出了基于AR_TSM方法的时间序列motif关联规则挖掘算法,从根本上避免了因motif分割引起的不确定性,保证了规则的一致性;最后,引入了关联规则评价参数RM,在多数据集上证明了关联规则的预测性能。 Mining potential association rules between time series motif can play an important role in predicting future trends.Time series motif is a previously unknown recurring pattern in time series.Aimed at the problem of information loss caused by symbolic time series when extract the motif,this paper developed a motif extraction algorithm PM_Motif based on pruning technology.It could extract motif accurately and quickly.Aimed at the problem of inconsistent rules caused by splitting motif to find its internal association rules,this paper developed an association rule mining algorithm between time series motif based on AR_TSM method.It could fundamentally avoid the uncertainty caused by motif segmentation and ensure the consistency of the rules.Finally,it introduced the association rule evaluation parameter RM,and could prove the prediction performance of the association rule mining algorithm on multiple datasets.
作者 赵丹枫 黄雁玲 黄冬梅 林俊辰 宋巍 Zhao Danfeng;Huang Yanling;Huang Dongmei;Lin Junchen;Song Wei(Dept.of Information Technology,Shanghai Ocean University,Shanghai 201306,China;Shanghai University of Electric Power,Shanghai 200090,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第2期403-408,共6页 Application Research of Computers
基金 国家重点研发计划资助项目(2016YFC1401902)。
关键词 时间序列 MOTIF 关联规则 数据挖掘 关联规则评价参数 time series motif association rule data mining association rule evaluation parameter
  • 相关文献

参考文献3

二级参考文献37

  • 1李士进,朱跃龙,张晓花,万定生.基于BORDA计数法的多元水文时间序列相似性分析[J].水利学报,2009,39(3):378-384. 被引量:19
  • 2Abe, H., Ohsaki, M., Yokoi, H., Yamaguchi, T., 2005. Implementing an integrated time-series data mining envi- ronment based on temporal pattern extraction methods: a case study of an interferon therapy risk mining for chronic hepatitis. LNCS, 4012:425-435. [doi:10. 1007/11780496 45].
  • 3Andre-JSnsson, H., Badal, D.Z., 1997. Using Signature Files for Querying Time-Series Data. Practice of Knowledge Discovery in Databases, 1263:211-220.
  • 4Beaudoin, P.,-Coros, S., van'de Panne, M., Poulin, P., 2008. Motion-Motif Graphs. Symp. on Computer Animation, p.117-126.
  • 5Chiu, B.Y., Keogh, E.J., Lonardi, S., 2003. Probabilistic Discovery of Time Series Motifs. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.493- 498.
  • 6Ding, H., Trajcevski, G., Scheuermann, P., Wang, X.Y., Keogh, E.J., 2008. Querying and Mining of Time Series Data: Experimental Comparison of Representa- tions and Distance Measures. Proc. Int. Conf. on Very Large Data Bases, 1(2):1542-1552.
  • 7Ferreira, P.G., Azevedo, P.J., Silva, C.G., Brito, R.M.M. 2006. Mining approximate motifs in time series Discov. Sci., 4265:89-101. [doi:10.1007/11893318 12].
  • 8Guyet, T., Garbay, C., Dojat, M., 2007. Knowledge construction from time series data using a collaborative exploration system. J. Biomed. Inform., 40(6):672- 687. [doi: 10.1016/j.jbi.2007.09.006].
  • 9Hegland, M, Clarke, W., Kahn, M., 2001. Mining the Macho dataset. Comput. Phys. Commun., 142(1-3):22-28. [doi:10.1016/S0010-4655(01)00307-1].
  • 10Lin, J., Keogh, E., Lonardi, S., Patel, P., 2002. Finding Motifs in Time Series. 2nd Workshop on Temporal Data Mining at the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.53-68.

共引文献32

同被引文献77

引证文献9

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部