期刊文献+

时间图查询在实验设备管理中应用

Study on Experimental Equipment Management via Temporal Graph Query
下载PDF
导出
摘要 合理有效地管理实验设备有利于提高设备的利用率,现将时间图查询用于实验设备的管理,可以丰富查询的语义,提高设备的查询效率。将设备的使用情况抽象成一个大的时间图,将用户的查询请求转换为一个查询图,利用图匹配技术查询出相关的结果。为实现查询图的匹配,提出了3种相关算法:朴素匹配算法(NM)、基于BFS的点匹配算法(BVM)和拓扑剪枝匹配算法(TPM)。在TPM算法中设计了2种索引:TV-索引和TE-索引,分别用于快速定位节点和边上的关系,并从结构和语义两个角度对匹配过程进行了剪枝。最后,设计了对比实验,通过实验验证了3种算法的性能。 The effective management and use of the experimental equipment can raise the utilization of the facilities.The temporal graph query is used for the management of experimental equipment in this paper,which can extend query semantics and improve the efficiency of queries.The usage of equipment is translated into a big temporal graph and user’s query request is transformed into a query graph.The query result is obtained by graph matching technique.The paper proposes three algorithms:NM algorithm,BVM algorithm and TPM algorithm.The TPM algorithm uses two indexes TV-index and TE-index to improve its efficiency,which can locate the vertices and relations quickly.The TPM algorithm prunes some unnecessary matching from the perspectives of structure and semantics.At last,some comparative experiments are designed to verify the performance of the three algorithms.
作者 黄金晶 赵雷 HUANG Jinjing;ZHAO Lei(School of Software and Service Outsourcing,Suzhou Vocational Institute of Industrial Technology,Suzhou 215104,Jiangsu,China;School of Computer Science and Technology,Soochow University,Suzhou 215006,Jiangsu,China)
出处 《实验室研究与探索》 CAS 北大核心 2021年第1期231-236,共6页 Research and Exploration In Laboratory
基金 国家自然科学基金项目(61572335) 江苏省高等学校自然科学研究面上项目(19KJB520052) 江苏省高职院校青年教师企业实践培训资助项目。
关键词 实验设备管理 时间图 查询图 图匹配 experimental equipment management temporal graph query graph graph matching
  • 相关文献

参考文献3

二级参考文献67

  • 1Microsoft Academic Search. Explore researchers' cooperating network.[2009-12-01 J.[2014-11-20]. http://academic. research. microsoft. com/VisualExplorer.
  • 2Brynielsson J, Hogberg J, Kaati L, et al. Detecting social positions using simulation[C]//Proc of 2010 Int Conf on Advances in Social Networks Analysis and Mining (ASONAM). Alamitos, CA: IEEE, 2010: 48-55.
  • 3Palantir. Products Built for A Purpose.[2004-01-01].[2014-11-20]. https://www.palantir.com/.
  • 4Malewicz G, Austern M H, Bik A J C, et al, Pregel , A system for large-scale graph processing[C]//Proc of the 2010 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2010: 135-146.
  • 5Sarwat M, Elnikety S, He Y, et al. Horton: Online query execution engine for large distributed graphs[C]//Proc of the 28th IEEE Int Conf on Data Engineering (ICDE J. Alamitos, CA: IEEE, 2012: 1289-1292.
  • 6Low y, Gonzalez J, Kyrola A, et al. Graphlab , A new framework for parallel machine learning[C]//Proc of the 26th Conf on Uncertainty in Artificial Intelligence (UA]). Oregon, USA: AUAI, 2010.
  • 7Michael R G, David S J. Computers and intractability: A guide to the theory of NP-completeness[R]. New York: W. H. Freeman Company, 1979.
  • 8Christmas W J, Kittler J, Petrou M. Structural matching in computer vision using probabilistic relaxation[J]. Pattern Analysis and Machine Intelligence, 1995, 17(8): 749-764.
  • 9Ullmann J R. An algorithm for subgraph isomorphism[J]. Journal of the ACM (JACM), 1976,23(1): 31-42.
  • 10Cordelia L P, Foggia r. Sansone C, et al. A (sub) graph isomorphism algorithm for matching large graphs[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1367-1372.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部