期刊文献+

基于IQ图特征的通信辐射源个体识别 被引量:11

Specific Emitter Identification of Communication Radiation Source Based on the Characteristics IQ Graph Features
下载PDF
导出
摘要 在真实的战场环境中,我们很难采集到足够的带标签的敌方辐射源数据,通过不断地发展,CNN神经网络有着很强的处理图片分类的能力,为了充分利用发展最为成熟的CNN神经网络,本文提出了一种将IQ路数据转化成图片的识别方法。由于数据的IQ图具有重复性与个体的差异性,通过实验,这种方法在识别不同个体超短波电台上有着94%的正确率,对比双谱特征,IQ图特征具有更强的识别能力。这种特征变换方法简单,并且CNN网络处理图片分类的技术成熟,具有很强的实用性。 In the real battlefield environment,it is difficult for us to collect enough labeled enemy radiation source data.Through continuous development,CNN neural network has a strong ability to process image classification,in order to make full use of the most mature CNN neural network.Network,this paper proposes a recognition method that converts IQ data into pictures.Because the IQ map of the data has repeatability and individual differences,through experiments,this method has a 94%correct rate in identifying different individual ultrashort wave radio stations.Compared with the bispectral feature,the IQ map feature has a stronger recognition ability.This feature transformation method is simple,and the CNN network processing image classification technology is mature and has strong practicability.
作者 陈悦 雷迎科 李昕 叶铃 梅凡 CHEN Yue;LEI Yingke;LI Xin;YE Ling;MEI Fan(Institute of Electronic Countermeasure,National University of Defense Technology,Hefei,Anhui 230037,China;96833 Army of the People Lib Liberation Army,Huaihua,Hunan 418000,China)
出处 《信号处理》 CSCD 北大核心 2021年第1期120-125,共6页 Journal of Signal Processing
基金 复杂电磁环境下通信辐射源个体识别若干关键技术研究(62071479)。
关键词 IQ图特征 CNN神经网络 辐射源个体识别 IQ chart features CNN neural network specific emitter identification
  • 相关文献

参考文献4

二级参考文献19

  • 1马君国,肖怀铁,李保国,朱江.基于局部围线积分双谱的空间目标识别算法[J].系统工程与电子技术,2005,27(8):1490-1493. 被引量:19
  • 2柳征,姜文利,周一宇.基于小波包变换的辐射源信号识别[J].信号处理,2005,21(5):460-464. 被引量:34
  • 3蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2007,28(2):75-79. 被引量:84
  • 4StephaneG Mallat(法) 杨力华译.《信号处理的小波导引》[M].机械工业出版社,2002..
  • 5Lcohen(美) 白居宪(译).《时频分析:理论与应用》[M].西安交通大学出版社,1998..
  • 6R.R.Coifman and M.V.Wickerhauser, Entropy-based algorithms for best basis selection, IEEE. Trans. Info.Theory, Vol.38, No.2, pp.713-718, March 1992.
  • 7Satio,N., Local Feature Extraction and its Applications using a Library of Bases, Ph.D. Thesis, Dept. of Mathemafics, Yale University, New Haven, CT USA, December,1994.
  • 8N. Saito, R.Coifman, Local discriminant bases, in:A.ELaine, M.A. Unser(Eds.), Mathematical Imaging:Wavelet Applications in Signal and Image Processing Ⅱ,Proc. SPIE, Vol.2303, pp.2-14, 1994.
  • 9M. Basseville, "Distance measures for signal processing and pattern recognition", Signal Processing, vol.8, no.4,pp.349-369, 1989.
  • 10WaveLab version 0.800, Stanford Univ., 1999, http://www-stat.stanford.edu/-wavelab.

共引文献65

同被引文献75

引证文献11

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部