期刊文献+

利用中通道补偿的单幅图像去雾 被引量:1

Single Image Dehazing Based on Middle Channel Compensation
下载PDF
导出
摘要 针对雾天图像对比度低和细节模糊等问题,将图像分解为纹理层和结构层,对含有大部分雾气的结构层进行去雾,对纹理层进行增强.为了避免大气光估计易受白色物体影响,提出一种RGB空间立体判决图,并设计基于自适应阈值约束的大气光估计方法,可有效区分天空和非天空区域;针对暗通道先验处理大面积天空、浓雾区域失效问题,提出一种基于中通道补偿的透射率估计方法,可有效克服去雾后图像颜色失真;同时,基于侧窗导向滤波对上述透射率进行修正,能够较好地保持细节.实验表明,本文方法能有效去除雾气,去雾后图像颜色自然,细节保持良好. Focusing on foggy images with low contrast and blurry detail,this paper decomposes the images into texture layer and structural layer firstly.Then the structural layer containing most of the fog is dehazed,and the texture layer is enhanced.To avoid the effect of white objects in the scene on atmospheric light estimation,this paper proposes a kind of stereo decision map in RGB space,and designs an atmospheric light estimation method which can adaptively distinguish between sky and non-sky area based on a threshold constraining scheme.Due to the inefficiency of dark channel prior when dealing with large areas of sky and dense fog,a transmission estimation approach based on middle channel compensation is put forward,which can avoid color distortion of dehazed images.Furthermore,the transmission is refined by the guided filtering with side window,which can preserve image details.Extensive experimental results show that the proposed approach can realize haze removal thoroughly,and the dehazed image has natural colors and vivid details.
作者 杨爱萍 邢金娜 刘瑾 李晓晓 YANG Ai-ping;XING Jin-na;LIU Jin;LI Xiao-xiao(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第2期180-188,共9页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61771329,61632018).
关键词 图像去雾 中通道补偿 自适应大气光估计 侧窗导向滤波 图像分层 image dehazing middle channel compensation adaptive atmospheric light estimation guided filtering with side window image layering
  • 相关文献

参考文献3

二级参考文献28

  • 1Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 2Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72.
  • 3He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963.
  • 4Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208.
  • 5Namer E, Schectmer Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science arid Remote Sensing. San Diego, USA: SPIE, 2005. 36-45.
  • 6Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. In: Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, 1999. 97-100.
  • 7Burt P J, Kolczynski IR J. Enhanced image capture through fllsion. In: Proceedings of the 4th Iuternational Confe, rence on Computer Vision. Berlin, USA: IEEE, 1993. 173-182.
  • 8Paris M, Fredo D. A fast approximation of the bilateral fil- ter using a signal processing approach. Ⅲ: Proeeedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 568-580.
  • 9Drago F, Myszkowski K, Annen T, Chiba N. Adaptive log- arithmic mapping for displaying high contrast sce,ms. Com- puter Graphics Forum, 2003, 22(3): 419-426.
  • 10Hautiere N, TareI J P, Aubert D, Dumont E. Blind con- trast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereologsz, 2008, 27(2): 87-95.

共引文献120

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部