期刊文献+

飞行器上层大气层空气动力特性探讨 被引量:2

On Characteristics of Upper Atmosphere Aerodynamics of Flying Vehicles
下载PDF
导出
摘要 针对近地轨道飞行器所面临的上层大气层(100~300 km)空气动力学问题,对几类典型航天器构型的上层大气层气动力特性进行了分析,给出了典型气动布局在该空域的气动力基本规律,取得了对上层大气层气动力关键影响因素的初步认识.在上层大气层,飞行器的绕流属于自由分子流状态.研究发现,气体分子与不同材质物面的相互作用反映出截然不同的升力和阻力特性.对于1 m2气动受力面的飞行器,在100~200 km轨道高度存在大于1 mN的气动力,在接近300 km轨道高度时受到的气动力则远小于1 mN.在一般条件下,飞行器的升阻比小于1.但是,当物面适应系数约为0.2时,在100~200 km轨道高度存在升阻比大于1的状态,这一特点体现了上层大气层气动力学的基本特性.据此认为,100~200 km是气动力可利用的飞行空域,在此空域开展上层大气层空气动力学研究,对于未来发展上层大气层飞行器意义重大. In order to gain the understanding on aerodynamics of flying vehicles in the upper atmosphere(100~300 km),aerodynamic characteristics of typical aerospace vehicles in this space have been analyzed,and a preliminary understanding on the key factors of the upper atmosphere aerodynamics has been obtained.The gas flow over objects in the upper atmosphere falls into the free-molecular flow regime due to its extremely rarefied air stream.The aerodynamic force of a typical vehicle with an upstream flow deploying area of 1 m2 is at the order of 1 mN in the range of altitudes from 100 to 200 km,and it is much smaller than 1 mN at altitudes close to 300 km.Generally,the lift-to-drag ratio of space vehicles flying in the upper atmosphere is smaller than 1.However,it can be augmented by decreasing the accommodation coefficient in gas-surface-interaction.In exploration calculation,the lift-to-drag ratio can be larger than 1 when the accommodation coefficient is about 0.2,which indicates that the upper atmosphere zone between 100 and 200 km can be utilized for flying vehicles in terms of aerodynamic force.Therefore,it is meaningful to carry out the upper atmosphere aerodynamics research for the development of upper atmosphere vehicles.
作者 沈清 黄飞 程晓丽 靳旭红 SHEN Qing;HUANG Fei;CHENG Xiao-li;JIN Xu-hong(China Academy of Aerospace Aerodynamics, Beijing 100074, China;School of Aerospace, Tsinghua University, Beijing 100084, China)
出处 《气体物理》 2021年第1期1-9,共9页 Physics of Gases
关键词 稀薄流 气动力 航天器 物面适应系数 阻力 rarefied gas flow aerodynamics spacecraft accommodation coefficient drag
  • 相关文献

参考文献6

二级参考文献64

  • 1黄志澄.空天飞机的真实气体效应[J].气动实验与测量控制,1994,8(2):1-9. 被引量:7
  • 2孙佳.国外合成孔径雷达卫星发展趋势分析[J].装备指挥技术学院学报,2007,18(1):67-70. 被引量:19
  • 3孙长喜,魏攀科.国外照相侦察卫星发展综述[J].国防科技,2007,28(2):39-41. 被引量:6
  • 4程晓丽,苗文博,周伟江.真实气体效应对高超声速轨道器气动特性的影响[J].宇航学报,2007,28(2):259-264. 被引量:13
  • 5杨晓铁.美国空军临近空间建设发展现状与启示.空军工程大学学报(军事科学版),2009(1):16-19.
  • 6洪延姬,金星,等.临近空间飞行器技术.北京:国防工业出版社,2012.
  • 7Dogra V K,Moss J N, Wilmoth R G, et al. Effects of chemistry on blunt body wake structure[ R]. AIAA paper 94 -0352,1995.
  • 8Moss J N, Wilmoth R G, Price J M. DSMC simulations of blunt body flows for mars entries:mars pathfinder and mars microprobe capsules[ R~. AIAA97 - 33224,1997.
  • 9Padilla J F, Tseng K C, Boyd I D. Analysis of entry vehicle aerothermodynamics using the direct simulation monte carlo mehod[R]. AIAA paper 2005 -4681,2005.
  • 10Moss J N, Glass C E, Greene F A. DSMC simulation of apollo capsule aerodynamics for hypersonic rarefied conditions [ R ]. AIAA paper 2006 - 3577,2006.

共引文献63

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部