期刊文献+

钼酸铋基异质结型光催化材料的研究进展 被引量:2

Research progress on bismuth molybdate heterojunction of photocatalytic materials
下载PDF
导出
摘要 人类面临着能源短缺和环境污染两大难题,而光催化技术的发展对于这两大问题的解决具有重要意义。光催化技术的核心是光催化剂。在众多的光催化剂中,钼酸铋由于具有独特的钙钛片层状结构和优良的可见光催化性能,近年来引起了研究者的广泛关注。重点概述了钼酸铋基异质结光催化材料的构建方法和典型的钼酸铋基异质结体系,系统地归纳了各种钼酸铋基异质结型光催化材料的催化活性和应用领域,并对钼酸铋基异质结型光催化材料的发展方向进行了展望。 Human beings are facing with two major problems:energy shortage and environmental pollution.The development of photocatalysis technology plays a crucial role in solving these two problems.The core of photocatalytic technology is photocatalyst.Among most photocatalysts,bismuth molybdate has attracted much attention in recent years due to its unique layered structure and excellent visible light photocatalytic performance.This paper focus to summarize the construction methods and typical heterojunction systems of bismuth molybdate based heterojunction photocatalysis materials,and the catalytic activities and application fields of various bismuth molybdate based heterojunction materials are outlined systematically.Finally,the future development of bismuth molybdate based heterojunction photocatalytic materials is prospected.
作者 焦长泉 易均辉 莫惠媚 李芝霖 赵汇斌 Jiao Changquan;Yi Junhui;Mo Huimei;Li Zhilin;Zhao Huibin(College of Chemical Engineering,Guangdong University of Petrochemical Technology,Maoming 525000,China)
出处 《工业水处理》 CAS CSCD 北大核心 2021年第2期1-7,14,共8页 Industrial Water Treatment
基金 国家自然科学基金项目(21777034) 广东省自然科学基金项目(2019A1515012130) 茂名市科技计划项目(2019412) 国家级大学生创新创业项目(201911656017) 广东省科技大专项(2020S00059)。
关键词 钼酸铋 异质结 构建方法 光催化 研究进展 bismuth molybdate heterojunction construction method photocatalysis research progress
  • 相关文献

参考文献6

二级参考文献53

  • 1Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode ~ J 1.Nature, 238 (5358) : 37-38.
  • 2Hoffmann M R, Martin S T, Choi W, et al. 1995. Environmental applications of semiconductor photocatalysis [ J ]. Chemical Reviews, 95 ( 1 ) : 69-96.
  • 3Colon G, Fernandez-Garcia M, Kubacka A. 2012. Advanced nanoarchitectures for solar photocatalytic applications [ J ]. Chemical Reviews, 112(3) : 1555-1614.
  • 4Fujishima A, Nakata K.2012.TiO2 photocatalysis : Design and applications [ J ]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 13 ( 3 ) : 169-189.
  • 5Chen X, Mao S S. 2007. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [ J ]. Chemical Reviews, 107(7) :2891-2959.
  • 6Emeline A V, Serpone N. 2012. Semiconductor photocatalysis - past, present, and future outlook [ J ] .Journal of Physical Chemistry Letters, 3(5) :673-677.
  • 7Cheng L, Kang Y.2014.Selective preparation of Bi203 visible-light-driven photocatalyst by dispersant and calcination[ J~ .Journal of Alloys and Compounds, 585 : 85-93.
  • 8Jacobson A J, Mims C A, Puri M, et al. 1997. Propene oxidation on substituted 2 : ! bismuth molybdates and vanadates [ J 1. Catalysis Today, 37 ( l ) :43-49.
  • 9Kato H, Kobayashi H, Kudo A, et al. 2006. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation [ J ]. Journal of Physical Chemistry B, 110 ( 36 ) : 17790-17797.
  • 10Bi J, Fu X, Li H, et al. 2007. Simple solvothermal routes to synthesize nanocrystalline Bi2Mo06 photocatalysts with different morphologies [ J ].Acta Materialia, 55 (14) :4-699-4705.

共引文献45

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部