期刊文献+

一种改进SURF特征匹配的装配工件快速识别方法 被引量:6

A Fast Recognition Method for Assembly Workpiece Based on Improved SURF Feature Matching
下载PDF
导出
摘要 在工件装配过程中,针对基于SURF算法的工件匹配识别过程速度慢、实时性较差的问题,通过对K-Means聚类算法以及机器学习中文本检索方法进行研究,推导了基于聚类算法的特征点种类词袋模型,对特征点类别进行统计。提出反向标记法生成目标物体描述向量。在物体匹配识别阶段,对待检测物体的描述向量分段进行匹配并选取满足阈值条件的子向量作为最终匹配向量来实现目标物体的识别。实验结果表明改进算法在一定尺度、光照、旋转条件影响下实现了工件的准确识别,并且提高了识别速度。 To solve the problem of slow speed and poor real-time in object matching and recognition based on SURF algorithm during the process of workpiece assembly,through the research of K-means clustering algorithm and text retrieval method in machine learning,the feature point category bag model based on clustering algorithm is deduced,and the feature point category is counted.The reverse labeling method is used to generate the description vector of the target object.In the phase of object matching recognition,the description vectors of the detected objects are matched in segments and the sub-vectors satisfying the threshold conditions are selected as the final matching vectors to realize the target object recognition.The result of the experiment shows that the improved algorithm achieves the accurate recognition of workpiece under the influence of certain scale,illumination and rotation conditions,and improves the recognition speed.
作者 张明路 王帅 张小俊 高涵 ZHANG Ming-lu;WANG Shuai;ZHANG Xiao-jun;GAO Han(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
出处 《机械设计与制造》 北大核心 2021年第2期262-267,共6页 Machinery Design & Manufacture
基金 国家863计划资助项目(2015AA043101) 国家自然科学基金项目资助项目(61473113)。
关键词 SURF算法 特征提取 K-MEANS算法 词袋模型 物体识别 Surf Algorithm Feature Extracting K-Means Algorithm Bag-of-Words Model Object Recognition
  • 相关文献

参考文献10

二级参考文献74

共引文献91

同被引文献66

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部