期刊文献+

改进的多变量极限学习机在滚动轴承故障预测中的应用 被引量:2

Application of Improved Multivariable Extreme Learning Machine in Fault Prediction of Rolling Bearing
下载PDF
导出
摘要 传统滚动轴承故障预测仅对单个故障特征频率做时间序列预测,而滚动轴承故障由多个故障频率共同表征。为了全面的表征整个频谱的结构,并且不破坏各个频率间的内部联系,提出奇异值分解和极限学习机相结合的多变量时间序列预测方法。首先通过全矢谱方法得到振动信号频谱,然后以整个频谱的各个频率作为输入变量,构建多变量时间序列。最后通过多变量极限学习机和奇异值分解相结合的方法构建训练和测试样本,对频谱进行预测。采用该方法对全寿命滚动轴承数据进行验证,实验结果表明了该方法的有效性。 Traditional rolling bearing fault prediction only performs time series prediction for single fault characteristic frequency,while rolling bearing faults are characterized by multiple fault frequencies.In order to comprehensively characterize the structure of the whole spectrum without destroying the internal relations between the frequencies,a multivariate time series prediction method combining singular value decomposition and extreme learning machine is proposed.Firstly,the spectrum of the vibration signal is obtained by the full vector method,and then the multivariate time series is constructed by using the respective frequencies of the entire spectrum as input variables.Finally,the training and test samples are constructed by combining the multivariate extreme learning machine and the singular value decomposition to predict the spectrum.The method is used to verify the data of the full-life rolling bearing,The experimental results show the effectiveness of the method.
作者 王鸣明 李凌均 张炎磊 汪一飞 WANG Ming-ming;LI Ling-jun;ZHANG Yan-lei;WANG Yi-fei(Research Institute of Vibration Engineering,Zhengzhou University,He’nan Zhengzhou 450001,China)
出处 《机械设计与制造》 北大核心 2021年第2期290-293,共4页 Machinery Design & Manufacture
基金 游乐园和景区载人设备全生命周期检测监测与完整性评价技术研究(2016YFF0203100)。
关键词 SVDMELM 极限学习机 奇异值分解 频谱 滚动轴承 故障预测 SVDMELM Extreme Learning Machine Singular Value Decomposition Spectrum Rolling Bearing Fault Prediction
  • 相关文献

参考文献6

二级参考文献63

  • 1DuanChendong HeZhengjia JiangHongkai.NEW METHOD FOR WEAK FAULT FEATURE EXTRACTION BASED ON SECOND GENERATION WAVELET TRANSFORM AND ITS APPLICATION[J].Chinese Journal of Mechanical Engineering,2004,17(4):543-547. 被引量:12
  • 2王仲生,何红,陈钱.小波分析在发动机早期故障识别中的应用研究[J].西北工业大学学报,2006,24(1):68-71. 被引量:18
  • 3曾德良,崔泽朋,田亮,赵征.基于灰色关联和D-S组合规则的磨煤机故障诊断[J].动力工程,2007,27(2):207-210. 被引量:14
  • 4Li Jing, Qu Liangsheng. Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis[J]. Journal of Sound and Vibration, 2000, 234(1): 135-148.
  • 5Shan Lixiang, Tay F E H, Qu Liangsheng, et al. Fault Diagnosis Using Rough Sets Theory[J]. Computers in Industry, 2000,43 : 61-72.
  • 6Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Amsterdam: Kluwer Academic Publishers, 1991.
  • 7Slowiski R. Intelligent Decision Support:Handbook of Application of Rough Sets Theory[M]. Amsterdam: Kluwer Academic Publishers, 1992.
  • 8Slowinski R, Stefanowski J. Rough--set Reasoning about Uncertain Data [J]. Fundamenta Informaticae, 1996, 27(2): 229-243.
  • 9Donoho D L,Jonnston I M. Adapting to unknownsmoothness via wavelet shrinkage[J], J. Am. Stat.Assoc.,1995,90:1 200-1 224.
  • 10Bunks C,Mccarthy D. Condition-based maintenanceof machines using hidden Markov models[J]. Mechan-ical Systems and Signal Processing, 2000,14? 597-612.

共引文献78

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部