期刊文献+

基于遗传模拟退火算法的滑坡位移预测方法 被引量:3

Landslide displacement prediction based on the Genetic Simulated Annealing algorithm
下载PDF
导出
摘要 滑坡是一种常见的地质灾害,通常在复杂的地质条件下演化和发生,给社会和人类的生命财产安全造成了极大的危害。了解滑坡的发展规律,对灾害防治具有重要意义。在现有滑坡累积位移时间序列的基础上,提出了一种基于遗传模拟退火算法的滑坡位移预测方法。采用遗传模拟退火算法-BP神经网络对白水河滑坡预警区Z118观测点进行分析,利用前3个月的累积位移来预测第4个月的累积位移。分别与BP神经网络模型和Elman神经网络模型进行比较,并将遗传模拟退火算法的预测结果与支持向量机的预测结果进行比较。研究结果表明,建立的滑坡位移预测模型能有效地提高预测精度。 The landslide,the evolution of which usually occurs under complex geological conditions,and which brings about great damage to human life and property,is a common geological disaster.Understanding the development of landslides is important for the prevention and control of these disasters.Using field time series data on cumulative landslide displacement,a landslide displacement prediction method based on the Genetic Simulated Annealing algorithm was proposed.The Genetic Simulated Annealing algorithm optimized BP neural network was used to analyze observation point Z118 in the Baishui River landslide warning area.The cumulative displacement data of the first 3 months was applied to predict the accumulated displacement of the 4 month.The results of the BP neural network model and the Elman neural network model were compared.At the same time,the prediction results of the Genetic Simulated Annealing algorithm and the Support Vector Machine model were compared.The results showed that the landslide displacement prediction model established in this article can improve the accuracy of the prediction,and provide a reference for landslide displacement prediction in engineering construction.
作者 乔世范 王超 QIAO Shifan;WANG Chao(School of Civil Engineering,Central South University,Changsha 410075,P.R.China)
出处 《土木与环境工程学报(中英文)》 CSCD 北大核心 2021年第1期25-35,共11页 Journal of Civil and Environmental Engineering
基金 Key Projects Supported by China Railway Corporation(No.2017G007-D,2017G008-J)。
关键词 滑坡 位移预测 遗传模拟退火算法 神经网络 支持向量机 landslide displacement prediction Genetic Simulated Annealing algorithm neural network Support Vector Machine
  • 相关文献

参考文献4

二级参考文献37

共引文献90

同被引文献40

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部