期刊文献+

运用带跳过程的死亡力度对死亡率的估计 被引量:1

Estimation of Death Rate When Death Force Is a Jump Process
原文传递
导出
摘要 死亡率是分析各类寿险精算函数的基础。在传统的精算实务中实质上是假定了死亡率是静态不变的,然而,根据世界各国的历史人口统计数据,死亡率却是随时间而变动的,具有随机性和非连续性。人口老龄化所带来的长寿风险对社会养老保险精算带来巨大的挑战,准确的预测死亡率,提高精算结果的科学性是防范长寿风险的主要技术手段。本文对带跳随机死亡力度模型的参数提出估计方法,进而对死亡率进行预测。通过实证研究,总体来看,利用这种方法对死亡率的预测结果具有较好的预测精度。 The death rate is the basis of analyzing all kinds of actuarial functions.In the traditional actuarial practice,it is essentially assumed that the death rate is static.However,according to the historical demographic data of all countries in the world,the death rate changes with time,which is random and discontinuous.The longevity risk brought by the aging of population brings great challenges to the actuarial of social endowment insurance.The main technical means to prevent longevity risk is to accurately predict the death rate and improve the scientificity of actuarial results.In this paper,we propose an estimation method for the parameters of the random death rate model under the force of mortality with jump,so as to predict the death rate.Through empirical research,on the whole,this method has good estimation accuracy for mortality.
作者 孙荣 SUN Rong(Dept of Math and Statistics,Chongqing Universty of Technol and Business,Chongqing 400067,China;Chongqing Key Laboratory of Social Economic and Applied Statistics,Chongqing 400067,China)
出处 《系统工程》 北大核心 2021年第1期43-49,共7页 Systems Engineering
基金 国家社科基金资助项目(19BTJ020)。
关键词 死亡力度 跳过程 死亡率 预测 Death Force Jump Process Death Rate Prediction
  • 相关文献

参考文献2

二级参考文献31

  • 1东明.随机利率下的联合寿险精算模型[J].系统工程,2006,24(4):68-72. 被引量:14
  • 2Schepper A D, Goovaerts M. Some further results on annuities certain with random interest[J]. Insurance : Mathematics and Economics, 1992, 11 : 283-290.
  • 3Schepper A D, Goovaerts M, Kaas R. A recursive scheme for perpetuities with random positive interest rates[J]. Scandinavian Actuarial Journal, 1997, (1) : 1-10.
  • 4Olivieri A. Uncertainty in mortality projections: an actuarial perspective[J]. Insurance :Mathematics and Economics, 2001,29(2):231-245.
  • 5Cairns A J G, Blake D, Dowd K. Pricing death: frameworks for the valuation and securitization of mortality risk [J]. ASTIN Bulletin, 2006,36 ( 1 ): 79-120.
  • 6Lee R D,Carter L R. Modeling and forecasting U. S. mortality[J]. Journal of the American Statistical Association, 1992,87 : 659- 671.
  • 7Renshaw A E, Haberman S. Lee-Carter mortality forecasting with age-specific enhancement[J]. Insurance: Mathematics and Economics, 2003, 33:255-272.
  • 8Brouhns N, Denuit M, Van Keilegom I. Bootstrapping the Poisson log-bilinear model for mortality forecasting [J]. Scandinavian Actuarial Journal, 2005:212-224.
  • 9Pitacco E. Survival models in a dynamic context: a survey[J]. Insurance:Mathematics and Economics, 2004,35:279-298.
  • 10Duffle D, Pan J, Singleton K. Transform analysis and asset pricing for affine jump-diffusions [J]. Econometrica, 2000,68 : 1343-1376.

共引文献39

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部