期刊文献+

动态环境下基于Mask R-CNN的ORB-SLAM研究

Research on ORB-SLAM Based on Mask R-CNN in Dynamic Environment
下载PDF
导出
摘要 随着智能时代的到来,视觉机器人在自然场景中会遇到行人位姿变化、障碍物遮挡等复杂环境,使特征点误匹配。文章先对Mask R-CNN算法应用于动态环境下的SLAM中进行研究。通过深度神经网络优化SLAM视觉前端,使得神经网络能够对动态物体进行检测并能在很大程度上识别动态特征点,减少了特征点的误匹配,提高了相机位姿估计的准确性。最后与ORB-SLAM2进行仿真对比,结果表明,该文算法和ORB-SLAM2算法相比精度提高了96%以上,能够明显的提高SLAM算法匹配的正确率。 With the advent of the intelligent era,visual robots will encounter complex environments such as pedestrian pose change and obstacles occlusion in natural scenes,which makes feature points mismatched.The article first studies the Mask R-CNN algorithm applied to SLAM in a dynamic environment.The SLAM vision front end is optimized by the deep neural network,so that the neural network can detect dynamic objects and identify dynamic feature points to a large extent,reduce the mismatch of feature points,and improve the accuracy of camera pose estimation.Finally,a simulation comparison with ORB-SLAM2 shows that the accuracy of this algorithm is improved by more than 96%compared with ORB-SLAM2,which can significantly improve the accuracy of SLAM algorithm matching.
作者 王伟良 WANG Weiliang(Shenyang Jianzhu University,Shenyang 110168,China)
机构地区 沈阳建筑大学
出处 《现代信息科技》 2020年第21期80-83,共4页 Modern Information Technology
关键词 Mask R-CNN 动态环境 特征点匹配 视觉SLAM Mask R-CNN dynamic environment feature point matching visual SLAM
  • 相关文献

参考文献3

二级参考文献17

  • 1厉茂海,洪炳熔,蔡则苏.一种新的移动机器人全局定位算法[J].电子学报,2006,34(3):553-558. 被引量:10
  • 2荣思远,穆荣军,崔乃刚.EKF容错滤波方法在磁测自主导航中的应用研究[J].电子学报,2006,34(12):2268-2271. 被引量:9
  • 3R Smith, M self, P Cheeseman. Estimating uncertain spatial relationships in robotics[ A]. Proe of Conf Uncertainty in Artificial Intelligence[ C]. Amsterdam: North -Holland, 1988,435 - 461.
  • 4S J Julier, J K. Uhlmann. Unscented filtering and nonlinear estimarion[ J] .Proceedings of the IEEE,2004,92(3) :401 - 422.
  • 5A Doucet, N D Freitas, K Murphy, et al. Rao-Blackwellized particle filtering for dynamic Bayesian networks[A]. Proc of the Conf on Uncertainty in Artificial Intelligence[ C]. Stanford, CA, USA: UAI Press,2000. 176 - 183.
  • 6D Simon, T L Chia. Kalman filtering with state equality constlraints[ J ]. IEEE Transactions on Aerospace and Hectronic Systems,2002,38(1) : 128- 136.
  • 7R.C.Smith, P.Chessman. On the representation and estimation of spatial uncertainty [J].lnternational Journal of Robotics Re- search, 1986, 5(4):56-68.
  • 8Montemerlo M, Thrun S, Koller D. FastSLAM: A Factored So- lution to the Simultaneous Localization and Mapping Problem [C]//Proc of the National Conference on Artificial Intelligence, Canada, 2002:593-598.
  • 9Giorgio Grisettia, Gian Diego Tipaldi, Cyrilt Stachnissc, Wolfram Burgard,Daniele Nardi. Fast and accurate SLAM with Rao-Blackwellized particle filters[J].Robotics and Autonomous Systems. 2007, 55:30-38.
  • 10IZhijiang Du, Yixuan Sun, Yanyu Su, Wei Dong,A ROS/Gaze- bo Based Method in Developing Virtual Training Scene for Upper Limb Rehabilitation[J].lEEE,2014,3(14):307-311.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部