期刊文献+

有机自组装低维圆偏振发光材料的研究进展 被引量:1

Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials
下载PDF
导出
摘要 具有圆偏振发光(CPL)性质的材料由于在3D显示、光学存储以及光学防伪等领域的重要应用,近年来越来越受到研究人员的关注。超分子策略能够将不同类型的分子组装成具有独特功能的低维(零维、一维和二维等)结构,因而成为构筑CPL活性有机低维材料的最有效方法之一。本文从超分子自组装驱动力的角度综述了近几年自组装CPL活性有机低维材料的研究进展。首先,本文系统地总结了现阶段设计自组装CPL活性有机低维材料的策略,其次重点讨论了这类材料的性能及应用,最后探讨了这一领域未来的发展机遇和挑战。 In recent years,materials with Circularly Polarized Luminescence(CPL)have received growing attention due to their wide applications in 3D displays,optical storage,optical security,etc.Supramolecular self-assembling is one of the most effective methods to construct CPL active materials,which can assemble different types of molecules into low-dimensional(0D,1D and 2D)structures with unique functions.This review summarizes the research progress of self-assembled CPL active organic low-dimensional materials from recent years with emphasis on the driving force of supramolecular self-assembly.Firstly,the review systematically summarizes the current design strategies of self-assembled CPL active organic low-dimensional materials.Secondly,it focuses on their performance and applications.Finally,it discusses the future opportunities and challenges of this rapidly developing field.
作者 王梦竹 邓勇靖 刘淑娟 赵强 WANG Meng-Zhu;DENG Yong-Jing;LIU Shu-Juan;ZHAO Qiang(Institute of Information Materials and Nanotechnology,Nanjing University of Posts and Telecommunications(NUPT),Nanjing 210023,China;Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials(IAM),Nanjing 210023,China)
出处 《中国光学》 EI CAS CSCD 北大核心 2021年第1期66-76,共11页 Chinese Optics
基金 国家杰出青年科学基金(No.61825503) 国家自然科学基金(No.61775101,No.61805122)。
关键词 圆偏振发光 有机自组装低维材料 氢键 静电作用 金属配位作用 主客体相互作用 circularly polarized luminescence organic self-assembly low-dimensional materials hydrogen bonding electrostatic interactions metal coordination interactions host-guest interactions
  • 相关文献

参考文献6

二级参考文献40

  • 1Montgomery C P, Murray B S, New ,E J,Pal R ,Parkey ,D. Acc Chem Res ,2009,42:925 - 937.
  • 2Qiao Y,Lin Y Y,Zhang S F,Huang J B. Chem-Eur J,2011,17 :5180 -5187.
  • 3W u J,Wang G L,Jin D Y, Yaan J L,Guan Y F,Piper J. C bern Commun,2008,3:365 -367.
  • 4Cable M L,Kirby J P,Sorasaenee K,Gray H B,Ponce A. J Am Chem Soe,2007,129:1474 - 1475.
  • 5Taniguehi H, Kido J, Nishiya M, Sasaki S. Appl Phys Lett, 1995,67 : 1060 - 1062.
  • 6Slooff L H ,Brouwer van Blaaderen A,Polman A ,Hebbink G A,Klink S I,Van Veggel F C J M ,Reinhoudt D N,Hofstraat J W 2002,91:3955 - 3980.
  • 7Hanaoka K, Kikuchi K, Kobayashi S, Nagano T. J Am Chem Soe, 2007,129 : 13502 - 13509.
  • 8McGehee M D,Bergstedt T,Zhang C,Saab A P,Regan M B O,Bazan G C,Srdanov V I,Heeger A J. Adv Mater,1999,11:1349 -1354.
  • 9Lewis D J,Glover P B, Solomons M C,Pikramenou Z. J Am Chem Soc ,2011,133:1033 -1043.
  • 10Moore E G, Samuel A P S, Raymond K N. Acc Chem Res,2009,42:542 -552.

共引文献29

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部