期刊文献+

基于改进遗传算法的双向渐进结构优化方法研究 被引量:8

Research on bi-directional evolutionary structural optimization method based on improved genetic algorithm
下载PDF
导出
摘要 本文提出了一种基于改进遗传算法的软删除双向渐进结构优化法(G-BESO),以解决传统双向渐进结构优化法(BESO)中参数(如进化率)设置不当而导致无法获得最优拓扑构型的问题。首先确定单元权重系数与单元密度的递推关系式,形成一种考虑单元密度历史信息的材料插值模型,从而增强恢复误删高效单元的能力。然后引入遗传算法中的交叉和变异操作,启发式地更新结构状态以提高全局寻优能力。最后将该方法编写成可用于实际工程结构优化设计的程序。算例表明,提出的方法能稳定得到最优拓扑形状且计算效率更高,可为工程结构的拓扑优化设计提供一定参考。 A bi-directional evolutionary structural optimization method based on improved genetic algorithm is proposed to solve the problem of inability to obtain optimal topological layouts if the parameters(removal ratio)are not appropriately set in traditional bi-directional evolutionary structural optimization(BESO).First⁃ly,the relationship between the element weight coefficient and the element density is determined,forming a new material interpolation scheme that takes into account the historical information of element density,thus enhancing the ability to recover efficient elements deleted in previous iterations.Then,the crossover and mu⁃tation operations in the genetic algorithm are introduced to heuristically update the structure,which improves the global optimization ability.Finally,the proposed method is programmed for the optimization of practical engineering structures.The validity and robustness of the method are verified with two benchmark designs,which can provide reference for the optimal design of engineering structures.
作者 吴贝尼 夏利娟 WU Bei-ni;XIA Li-juan(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)
出处 《船舶力学》 EI CSCD 北大核心 2021年第2期193-201,共9页 Journal of Ship Mechanics
关键词 结构拓扑优化 遗传算法 双向渐进结构优化方法 材料插值模型 最优解 structural topology optimization genetic algorithm bi-directional evolutionary structural optimization(BESO) material interpolation scheme optimal design
  • 相关文献

参考文献5

二级参考文献48

共引文献123

同被引文献48

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部