期刊文献+

基于深度学习的立体影像密集匹配方法综述 被引量:16

A Review of Dense Stereo Image Matching Methods Based on Deep Learning
原文传递
导出
摘要 三维重建可用于数字高程模型制作、机器人导航、增强现实和自动驾驶等。视差图是三维重建中一种重要的表达方式,而立体密集匹配是使用最广泛的获取视差图的技术。近年来,随着硬件、数据集、算法的发展,基于深度学习的立体匹配方法受到了广泛关注并取得了巨大成功。然而,这些方法通常在近景立体像对中进行测试,很少被用于遥感影像中。回顾了双目立体匹配的深度学习方法,选出了代表性的5种经典深度学习模型——GC-Net(geometry and context network)模型、PSM-Net(pyramid stereo matching network)模型、GWC-Net(group-wise correlation stereo network)模型、GA-Net(guided aggregation network)模型、HSM-Net(hierarchical deep stereo matching network)模型,将其应用于一套开源街景数据集(KITTI2015)和两套航空遥感影像数据集(München、WHU);分析了各种网络的实现方法,探讨了深度学习在遥感影像立体匹配中的性能,并与传统方法进行了对比。 3D reconstruction technology is widely used in digital elevation model production, robot navigation, augmented reality and autonomous driving, etc. Disparity map is an important expression of 3D reconstruction, and stereo matching is the most widely used technology to obtain a disparity map. In recent years, with the development of hardware, data sets, and algorithms, stereo matching methods based on deep learning have received extensive attention and achieved great success. However, these works are mainly validated in close-range images, and the evaluation on remote sensing aerial images is scarce. This paper reviews deep learning methods for stereo matching, and selects five representative models, such as GC-Net(geometry and context network), PSM-Net(pyramid stereo matching network), GWC-Net(groupwise correlation stereo network), GA-Net(guided aggregation network), HSM-Net(hierarchical deep stereo matching network), and applies them to a set of open source street-scene datasets(KITTI2015) and two sets of aerial remote sensing image datasets(München, WHU). The various networks are analyzed,and the performance of deep learning stereo matching methods is discussed and compared to traditional methods. The experimental results reveals that most of the deep learning methods exceed the classic semiglobal matching and had a powerful generalization ability on cross-dataset transfer.
作者 季顺平 罗冲 刘瑾 JI Shunping;LUO Chong;LIU Jin(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2021年第2期193-202,共10页 Geomatics and Information Science of Wuhan University
基金 国家重点研发计划(2018YFB0505003)。
关键词 立体匹配 深度学习 航空遥感影像 dense matching deep learning aerial remote sensing image
  • 相关文献

参考文献3

二级参考文献19

  • 1Scharstein D, Szeliski R. A Taxonomy and Evalua tion of Dense Two-frame Stereo Correspondence A1 gorithms[J]. International Journal of Computer Vi sion, 2001, 47(1/2/3):7-42.
  • 2Brown M Z, Burschka D, Hager G D. Advances in Computational Stereo [J]. IEEE Trans Pattern Anal. Mach Intell, 2003, 25(8): 993-1 008.
  • 3Kande T, Okutomi M. A Stereo Matching Algo- rithm with an Adaptive Window, Theroy and Ex- periment[J]. IEEE Transaction on Pattern Analysisand Machine Itelligence, 1994,16(9) : 920-932.
  • 4Hong L, Chen G. Segment-based Stereo Matching Using Graph Cut[C]. Coference on Computer Vi- sion and Pattern Recognition, Washington, D C, 2004.
  • 5Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization Vis Graph Cuts[R]. IEEE Conference on Computer Vision and Pattern Recog- nition, Tech Rep, 2003.
  • 6Sun J, Shum Y H, Zheng N N. Stereo Matching Using Belief Propagation[J]. IEEE Transaction on Pattern Ana[ysls and Maching Intelligence, 2003,25 (7) :787-800.
  • 7Bobick A F, Intile S S. Large Occlusion Stereo[J]. International Journal of Computer Vision, 1999,33 (3) : 181-200.
  • 8Abdollahifard M, Faez K, Pourfard M. Fast Stereo Matching Using Two Stage Color-based Segmenta- tion And Dynamic Programming[C]. The 6th Inter- national Symposium on Mechatronics and Its Appli- cation, Tehran, Iran, 2009.
  • 9Ohta Y, Kanade T. Stereo by Intra-and Inter-scan- line Search Using Dynamic Programming[J]. IEEE Transactions on Patteren Analysis and Machine In- telligence, 1985(7): 139-154.
  • 10Bleyer M, Gelautz M. A Layered Stereo Matching Algorithm Using Image Segmentation and Global Visibility Constraints[J] Photogrammetry and Re- mote Sensing, 2005,59 : 128-150.

共引文献91

同被引文献72

引证文献16

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部