期刊文献+

Constrained voting extreme learning machine and its application 被引量:5

下载PDF
导出
摘要 Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods.
机构地区 School of Automation
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(61773405 61751312) the Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020123)。
  • 相关文献

参考文献8

二级参考文献54

  • 1任凤莲,李海斌,蔡震峰,游玉萍.铝电解质初晶温度测定装置及初晶点数模的研究[J].冶金分析,2005,25(3):9-12. 被引量:14
  • 2单敬福,纪友亮,柳成志.改进人工神经网络原理对储层渗透率的预测——以北部湾盆地涠西南凹陷为例[J].石油与天然气地质,2007,28(1):106-109. 被引量:15
  • 3Osman E A, Abdel-Wahhab O A, Al-Marhoun M A. Prediction of Oil PVT Properties Using Neural Networks[C]//Proc of the SPE Middle East Oil Show and Conf,2001.
  • 4Huang G B, Zhu Q Y, Siew C K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Network[C] //Proc of Int'l Joint Conf on Neural Networks, 2004.
  • 5Huang G-B, Zhu Q-Y, Siew C-K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70:489-501.
  • 6Vapnik V. Statistical Learning Theory[M], 1998.
  • 7libSVM[ED]. [2009-04-12]. http://www. csie. ntu. edu. tw/ -cjlin/libsvm/.
  • 8Fan R-E, Chen P-H, Lin C-J. Working Set Selection Using the Second Order Information for Training SVM[J]. Journal of Machine Learning Research, 2005,6 : 1889-1918.
  • 9Li M-B, Huang CrB, Saratchandran P, et al. Fully Complex Extreme Learning Machine[J]. Neurocomputing, 2005,68: 306-314.
  • 10Huang G-B,Siew C-K. Extreme Learning Machine with Randomly Assigned RBF Kernels[J]. International Journal of Information Technology, 2005,11(1): 16-24.

共引文献163

同被引文献61

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部