期刊文献+

考虑航艏向与数据变化差异的船舶轨迹预测 被引量:12

Vessel Trajectory Prediction Considering Difference Between Heading and Data Changes
下载PDF
导出
摘要 船舶自动识别系统(Automatic Identify System,AIS)数据可以实时体现船舶当前时刻的具体动态,采用传统BP(Back Propagation)神经网络模型的船舶轨迹分析预测方法,在计算中直接将航艏向数据纳入模型,没有考虑船舶航艏向在零度附近变动时带来的实际方向变动幅度与数据变化幅度存在较大偏差问题。为解决该问题,在BP神经网络基础上,引入双三角函数变换,同时将正弦值与余弦值纳入模型,将两者相结合,从两维度体现航艏向情况;在拟合预测后进行反三角函数变换和平均处理,构建一种基于改进神经网络算法的船舶AIS轨迹预测模型。选取实例数据进行模型验证,实例结果表明,该模型预测结果比不考虑差异方法的误差均方差更小,大幅降低误差幅度,可更精确地预测船舶轨迹。 Automatic identification system(AIS)data can reflect the specific dynamic of the ship at the current moment in real time,and the existing BP(Back Propagation)neural network based methods for ship trajectory analysis and prediction only take the heading data into the model directly.The methods do not consider the large deviation between the actual direction change range and the data change range when the ship heading changes near zero.In order to solve this problem,a ship AIS trajectory prediction model based on the improved neural network algorithm is constructed in this paper.The model introduces the double trigonometric function transformation on the basis of BP neural network.The sine value and cosine value are included in the model to consider the two-dimension direction of the heading.The inverse trigonometric function transformation and average processing are carried out to postprocess the predicted data.By selecting the case data to verify the model,the case results show that the prediction error of the model is smaller than the method without considering the difference,which greatly reduces the error range and can be more accurate for ship trajectory prediction.
作者 高天航 徐力 靳廉洁 葛彪 GAO Tian-hang;XU Li;JIN Lian-jie;GE Biao(Division ofWaterway Planning,Transport Planning and Research Institute Ministry of Transport,Beijing 100028,China;College of Transport Engineering,Dalian Maritime University,Dalian 116000,Liaoning,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第1期90-94,共5页 Journal of Transportation Systems Engineering and Information Technology
关键词 水路运输 船舶轨迹预测 BP神经网络 AIS数据 三角函数 waterway transportation vessel trajectory prediction BP neutral network AIS date trigonometric function
  • 相关文献

参考文献5

二级参考文献34

  • 1郭洪贵,东昉,方祥麟,金一丞,谷伟.墨卡托航行和大圆航线的微机计算法[J].大连海运学院学报,1989,15(1):20-33. 被引量:3
  • 2郭运韬,朱衍波,黄智刚.民用飞机航迹预测关键技术研究[J].中国民航大学学报,2007,25(1):20-24. 被引量:25
  • 3YEPES J L , HWANG I, ROTEA M . New algorithms for aircraft intent inference and trajectory prediction[J ]. Journal of Guidance Control and Dynamics, 2007,30 : 370 - 382.
  • 4PORRETTA M, DUPUY M D, SCHUSTER W, et al. Performance evaluation of a novel 4D trajectory prediction model for civil aircraft[J]. Journal of Navigation, 2008,61- 393 - 420.
  • 5LYMPEROPOULOS L, LYGEROS J. Sequential Monte Carlo methods for multi-aircraft trajectory prediction in air traffic management [ J]. International Journal of Adaptive Control and Signal Processing, 2010, 24:830- 849.
  • 6UENG S K, LIN D, LIU C H. A ship motion simulation system[ J ]. Virtual Reality, 2008, 12: 65 - 76.
  • 7LAGUNA M, MARTI R. Neural network prediction in a system for optimizing simulations [ J ]. IIE Transactions, 2002,34 : 273 - 282.
  • 8MAIER H R, DANDY G C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applieations[J ]. Environmental Modeling and Software, 2000,15 ( 1 ) : 101 - 124.
  • 9陈为,沈则潜.数据可视化[M].北京:电子工业出版社,2013:120-127.
  • 10HE W, XIONG J, LIU M C, et al. Technology of information collection and analyze about steer operation behavior of inland waterway sailing ship[J]. Journal of Coastal Research, 2015(73): 483-489.

共引文献105

同被引文献161

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部