期刊文献+

Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation 被引量:3

原文传递
导出
摘要 In this work degradation of Acid Red-18(AR-18)was examined in the hydrodynamic cavitation reactor.Orifice plates with different holes geometry are used to determine the optimum plate to carry out the degradation based on cavitation number.The obtained optimum orifice plate is used as a cavitating device on varying parameters like initial AR-18 concentrations,pH,temperatures,and operating pressures of the reactor.A photocatalyst(TiO2)was prepared by the sol-gel method and used in combination with H2O2 to intensify the degradation of AR-18.The obtained optimum condition of hydrodynamic cavitation was again used in the ultrasonic cavitation reactor for the comparison.Hydrodynamic cavitation(orifice)given the highest degradation as compared to Hydrodynamic cavitation(Venturi)and Ultrasonic Cavitation with and without the use of TiO2.At TiO2(300 mg/L)dose,88.1%,70.4%and 64.8%degradation is obtained in HC-O,HC-V and UC reactor at initial AR-18 concentration(15 ppm),pH(3),Operating temperature(35C),and H2O2(300 mg/L).Hence the use of an advanced oxidation process can be successfully used with hydrodynamic cavitation to intensify the degradation of Acid Red-18 under the controlled operating parameters.
出处 《Emerging Contaminants》 2020年第1期20-32,共13页 新兴污染物(英文)
  • 相关文献

参考文献1

二级参考文献19

  • 1Busca, G., Berardinelli, S., Resini, C., Arrighi, L., "Technologies for the removal of phenol from fluid streams: A short review of recent developments", Jr. Hazard. Mater., 160, 265-288 (2008).
  • 2Tumakaka, F., Prikhodko, I.V., Sadowski, G., "Modeling of solid-liquid equilibria for systems with solid-complex phase forma- tion", FluidPhase Equilib., 260, 98 104 (2007).
  • 3QVF Engineering Gmbh, Recovery of High Boiling Solvents from Waste Water (Phenol), http://www.qvf.com/erffprocesssystems_3/ Recovery%20Units/Phenol.shtml.
  • 4Zimmerman, F.J., "Wet air oxidation of hazardous organics in wastewater", U.S. Pat., 2665249 (1950).
  • 5Bhargava, S.K., Tardio, J., Prasad, J., Folger, K., Akolekar, D.B., Grocott, S.C., "Wet oxidation and catalytic wet oxidation", Ind. Eng. Chem. Res., 45, 1221 1258 (2006).
  • 6Luck, F., "Wet air oxidation: past, present and future", Catal. Today, 53, 81-91 (1999).
  • 7Luck, F., "A Review of industrial catalytic wet air oxidation processes", Catal. Today, 27, 195-202 (1996).
  • 8Fierro, V., Tome-Fernandez, V., Montane, D., Celzard, A., "Adsorp- tion of phenol onto activated carbons having different textural and surface properties", Micropor. Mesopor. Mater., 111, 276-284 (2008).
  • 9Chedeville, O., Debacq, M., Ferrante Almanza, M., Porte, C., "Use of an ejector for phenol containing water treatment by ozonation", Sep. Purif Teehnol., 57, 201-208 (2007).
  • 10Kamenev, S., KaUas, J., Munter, R., Trapido, M., "Chemical oxida- tion of biologically treated phenolic effluents", Waste Manag., 15, 203-208 (1995).

同被引文献30

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部