期刊文献+

支撑结构对碲锌镉固液界面形状的影响 被引量:2

Influence of Support Structure on the Solid-liquid Interface Shape of Cadmium Zinc Telluride
下载PDF
导出
摘要 在晶体生长过程中,固液界面形状与界面附近热流的状态有关。影响固液界面附近热流方向的因素有外部温场分布和材料热导率等。总结了常用的固液界面控制方式,然后采用CGSim温场模拟软件对3种使用不同支撑结构的晶体的生长过程进行了模拟,并对籽晶区以及锥形区内部固液界面的形状进行了对比。结果显示,支撑结构对籽晶区及锥形区内部固液界面的控制影响较大;通过采用合适的支撑结构设计并选取合适材料,同时配合外部温场的调节,能够得到理想的凸形固液界面。 During crystal growth,the solid-liquid interface shape is related to the state of heat flow nearby.The factors that affect the direction of heat flow in the solid-liquid interface include external temperature field distribution and material thermal conductivity.The commonly used solid-liquid interface control methods are summarized,and the CGSim temperature field simulation software is used to simulate three crystal growth processes using different support structures.At the same time,the solid-liquid interface shapes inside the seed area and the cone area are compared.The results show that the support structure has a greater influence on the control of the solid-liquid interfaces inside the seed area and the cone area.Using a suitable support structure design and appropriate selection of materials,with the adjustment of the external temperature field,the ideal convex solid-liquid interface shape can be obtained.
作者 徐强强 吴卿 XU Qiang-qiang;WU Qing(North China Research Institute of Electro-Optics,Beijing 100015,China)
出处 《红外》 CAS 2021年第2期29-34,48,共7页 Infrared
基金 国家自然科学基金项目(61805042) 上海市自然科学基金面上项目(20ZR1423400)。
关键词 固液界面形状 晶体生长 支撑结构 热流 solid-liquid interface shape crystal growth support structure heat flux
  • 相关文献

参考文献5

二级参考文献45

  • 1涂凡,苏小平,屠海令,张峰燚,丁国强,王思爱.VGF法GaAs单晶位错分布的数值模拟和Raman光谱研究[J].稀有金属,2010,34(2):237-242. 被引量:5
  • 2徐家跃.底部籽晶法:一种高温溶液晶体生长新方法[J].人工晶体学报,2005,34(1):1-6. 被引量:6
  • 3Rudolph P, Jurisch M. Bulk growth of GaAs an overview [ J ]. J. Crystal Growth, 1999, 198/199: 325.
  • 4Kuma S, Shibata M, Inada T. Gallium Arsenide and Related Compounds [M]. Bristol: lOP, 1994. 497.
  • 5Hashio K, Sawada S, Tatsumi M, Fujita K. Low dislocation density Si-doped GaAs single crystal grown by the vapor-pressure- controlled Czochralski method [ J ]. J. Crystal Growth, 1997,173(1-2) : 33.
  • 6Rudolph P, Nuebert M, Arulkumaran S, Seifert M. Vapour pressure controlled Czochralski (VCZ) growth: a method to pro- duce electronic materials with low dislocation density [ J ]. Crystal Research and Technology, 1997, 32( 1 ) : 35.
  • 7Gault W A, Monberg E M, Clemans J E. A novel application of the vertical gradient freeze method to the growth of high quality llI-V crystals [J]. J. Crystal Growth, 1986, 74(3) : 491.
  • 8Banos N, Friedrich J, Mailer G. Simulation of dislocation den- sity : Global modeling of bulk crystal growth by a quasi-steady ap- proach of the Alexander-Hassen concept [ J]. J. Crystal Growth, 2008, 310: 501.
  • 9Lukanina M A, Hodosevitch K V, Kalaev V V. 3D numerical simulation of heat transfer during horizontal direct crystallization of corundum single crystals [ J ]. J. Crystal Growth, 2006, 287 : 330.
  • 10Jordan A S. An evaluation of the thermal and elastic constants affecting GaAs crystal growth [J]..l. Crystal Growth, 1980. 49: 631.

共引文献18

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部