期刊文献+

有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性

Global Well-posedness for the 2D MHD System with Partial Dissipation and Magnetic Diffusion in a Bounded Domain
原文传递
导出
摘要 探究了具有部分耗散和磁扩散的二维不可压缩磁流体(MHD)方程的初边值问题.在有界区域上,当系统的各个方向上的耗散系数和磁扩散系数都非负时,我们得到了该模型的强解是整体存在且唯一的.此外,对周期域而言,其解仍是全局适定的. We consider the initial boundary value problem of the two-dimensional incompressible magnetohydrodynamic(MHD) equations with partial dissipation and magnetic diffusion.The global and unique strong solution of the model in a bounded domain is justified when the dissipation and magnetic diffusion coefficient in all directions are nonnegative.In addition,the global well-posedness of the system can be extended into the periodic boundary.
作者 张明玉 Ming Yu ZHANG(School of Mathematics and Information Sciences,Weifang University,Weifang 261061,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2021年第1期107-122,共16页 Acta Mathematica Sinica:Chinese Series
关键词 不可压缩磁流体 初边值问题 部分耗散 磁扩散 全局适定性 incompressible MHD initial-boundary value problem partial dissipation magnetic diffusion global well-posedness
  • 相关文献

二级参考文献27

  • 1Kulikovskiy A G, Lyubimov G A. Magnetohydrodynarnics [M]. Reading: Addison-Wesley, 1965.
  • 2Landau L D, Lifshitz E M. Electrodynamics of Continuous Media [M]. 2nd Ed. New York: Pergamon, 1984.
  • 3Polovin R V, Demutskii V P. Fundamentals of Magneto- hydrodynamics[M]. New York: Consultants Bureau, 1990.
  • 4Chen G Q,Wang D H. Global solution of nonlinear magne- tohydrodynamics with large initial data[J]. Differential Equations, 2002, 182: 344-376.
  • 5Chen Q, Tan Z. Global existence in critical spaces for the compressible magnetohydrodynamic equations[J]. Kinet Re- lat Models, 2012, 5: 743-767.
  • 6Fan J S, Yu W H. Strong solution to the compressible MHD equations with vacuum[J]. Nonlinear Anal Real World Appl, 2009,10: 392-409.
  • 7Hao C C. Well-posedness to the compressible viscous mag- netohydrodynamic system[J]. Nonlinear Anal Real World Appl, 2011,12: 2962-2972.
  • 8Hoff D, Tsyganov E. Uniqueness and continuous depend- ence of weak solutions in compressible magnetohydrody- namics[J]. ZAngew Math Phys, 2005, 56: 791-804.
  • 9Hu X P, Wang D H. Global existence to the three-dimensional full compressible magnetohydrodynamic flows[J]. Comm Math Phys, 2008, 283: 255-284.
  • 10Hu X P, Wang D H. Global existence and large-time behav- ior of solutions to the three-dimensional equations of com- pressible magnetohydrodynamic flows[J]. Arch Ration Mech Anal, 2010, 197: 203-238.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部