摘要
探究了具有部分耗散和磁扩散的二维不可压缩磁流体(MHD)方程的初边值问题.在有界区域上,当系统的各个方向上的耗散系数和磁扩散系数都非负时,我们得到了该模型的强解是整体存在且唯一的.此外,对周期域而言,其解仍是全局适定的.
We consider the initial boundary value problem of the two-dimensional incompressible magnetohydrodynamic(MHD) equations with partial dissipation and magnetic diffusion.The global and unique strong solution of the model in a bounded domain is justified when the dissipation and magnetic diffusion coefficient in all directions are nonnegative.In addition,the global well-posedness of the system can be extended into the periodic boundary.
作者
张明玉
Ming Yu ZHANG(School of Mathematics and Information Sciences,Weifang University,Weifang 261061,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2021年第1期107-122,共16页
Acta Mathematica Sinica:Chinese Series
关键词
不可压缩磁流体
初边值问题
部分耗散
磁扩散
全局适定性
incompressible MHD
initial-boundary value problem
partial dissipation
magnetic diffusion
global well-posedness