摘要
首先基于Hamilton变分准则推导了覆冰导线三自由度耦合动力学方程组,接着采用两种离散方法离散动张力应变,一种是直接使用Galerkin法离散,另一种是先将动张力应变等效处理,然后再使用Galerkin法离散。由风洞试验测得新月形覆冰四分裂导线的气动力系数,并将各子导线的气动力系数等效,接着利用泰勒展开式拟合气动力系数,选取攻角55°进行舞动分析。基于Runge-Kutta法得到两种离散方法下的位移响应曲线,通过对比这两者位移响应曲线的差别,发现不同的离散方法对系统的相位、频率以及振幅皆有一定程度的影响。本文研究有助于理论建模的完善,并能给予实际工程一些指导。
Based on the Hamilton’s principle,the coupled three-degree-of-freedom dynamic equations for an iced conductor are derived,and then two discrete methods are used to discretize the dynamic tension.One is to use Galerkin method directly,and the other is to treat the dynamic tension equivalently among the span length,and then use Galerkin method.Based on a wind tunnel test,the aerodynamics coefficients of the iced quad conductor is obtained,and the aerodynamics of each sub-conductor is equivalent.Then,the aerodynamic coefficients are fitted by Taylor’s series,and the angle of attack which is 55° is used to analyze of galloping characteristics of the iced quad conductor.Based on Runge-Kutta method,the displacement response of the two discrete methods are obtained.By comparing the differences of the displacement responses obtained by the two discrete methods,it is found that the two discrete methods have a certain influence on the phase,frequency and amplitude of the system.The research in this paper can be helpful to the improvement of theoretical modeling and can give some guidance to practical engineering.
作者
闵光云
刘小会
孙测世
蔡萌琦
MIN Guang-yun;LIU Xiao-hui;SUN Ce-shi;CAI Meng-qi(School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China;State Key Laboratory of Bridge and Tunnel Engineering in Mountain Areas,Chongqing Jiaotong University,Chongqing 400074,China;School of Architecture and Civil Engineering,Chengdu University,Chengdu 610106,China)
出处
《计算力学学报》
CAS
CSCD
北大核心
2021年第1期15-20,共6页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金(51308570,51808085,51507106)
重庆市研究生科研创新项目(CYS19240)
重庆市科委基础科学与前沿技术研究(cstc2017jcyjAX0246)
成都市国际科技合作项目(2020-GH02-00059-HZ)资助项目.
关键词
覆冰四分裂导线
舞动特征
离散方法
气动力系数
iced quad conductor
galloping characteristics
discrete method
aerodynamic coefficient